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Abstract

In the recent years, we witnessed an ever increasing number of successful hardware imple-
mentations of motion planners for legged robots. If one common property is to be identified
among these real-world applications, that is the ability of performing online (re)planning.
Online planning is forgiving, in the sense that it allows to relentlessly compensate for external
disturbances of whatever form they might be, ranging from unmodeled dynamics to external
pushes or unexpected obstacles and, at the same time, follow user commands. Initially replan-
ning was restricted only to heuristic-based planners that exploit the low computational effort
of simplified dynamic models. Such models deliberately only capture the main dynamics of
the system, thus leaving to the controllers the issue of anchoring the desired trajectory to the
whole body model of the robot. In recent years, however, a number of novel Model Predictive
Control (MPC) approaches have been presented that attempt to increase the accuracy of the
obtained solutions by employing more complex dynamic formulations, this without trading-off
the computational efficiency of simplified models.

In this dissertation, as an example of successful hardware implementation of heuristics and
simplified model-based locomotion, I first describe the control framework that I developed
for the generation of an omni-directional bounding gait for the HyQ quadruped robot. By
analyzing the stable limit cycles for the sagittal dynamics and the Center of Pressure (CoP)
for the lateral stabilization, the described locomotion framework is able to achieve a stable
bounding gait while adapting the footsteps to terrains of mild roughness and to sudden
changes of the user desired linear and angular velocities.

The next topic reported and second contribution of this dissertation is my effort to formulate
more descriptive simplified dynamic models, without compromising their computational effi-
ciency, in order to extend the navigation capabilities of legged robots to complex geometry
environments. With this in mind, I investigated the possibility of incorporating feasibility
constraints in these template models and, in particular, I focused on the joint-torque limits,
which are usually neglected at the planning stage.
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iv Abstract

Along the same direction, the third contribution discussed in this thesis is the formulation of
the so called actuation wrench polytope (AWP), defined as the set of feasible wrenches that an
articulated robot can perform given its actuation limits. Interesected with the contact wrench
cone (CWC), this yields a new 6D polytope that we name feasible wrench polytope (FWP),
defined as the set of all wrenches that a legged robot can realize given its actuation capabilities
and the friction constraints. Results are reported where, thanks to efficient computational
geometry algorithms and to appropriate approximations, the FWP is employed for a one-
step receding horizon optimization of center of mass trajectory and phase durations given a
predefined step sequence on rough terrains.

In order to augment the robot’s reachable workspace, I then decided to trade off the generality
of the FWP formulation for a suboptimal scenario in which a quasi-static motion is assumed.
This led to the definition of a new concept that I refer to under the name of feasible region.
This can be seen as a different variant of 2D linear subspaces orthogonal to gravity where the
robot is guaranteed to place its own center of mass (CoM) while being able to carry its own
body weight given its actuation capabilities. The feasible region provides an intuitive tool for
the visualization in 2D of the actuation capabilities of legged robots. The low dimensionality
of the feasible region also enables the concurrent online optimization of actuation consistent
CoM trajectories and target foothold locations on rough terrains, which can hardly be achieved
with other state-of-the-art approaches.
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“Always look at the ratio between the problems you solve and the problems you
cause. Then always make sure that this ratio stays strictly greater than 1.”

— Anonymous





Chapter 1

Introduction

Legged robots promise to invade our everyday life within a not too distant future. Collab-
orative robots will enter our houses to provide support to the elderly and for house keeping
purposes; autonomous vehicles will deliver heavy materials in construction sites or packages
at our doorbell; emergency robots will intervene in dangerous areas after natural calamities
to verify the condition of precarious buildings, to flank, and maybe even replace, the first re-
sponse activities of rescue teams. All these machines will need to move inside human-tailored
environments such as houses and industrial plants, or inside unstructured environments like
the ruins of an earthquake. In all of these scenarios, wheeled vehicles do not provide a suf-
ficient degree of mobility because of the limited size of the obstacles that they are able to
overcome. On the other hand, legged robots potentially offer the desired versatility that allows
to cross human-tailored environments such as stairs or sidewalks and unstructured terrains
with obstacles of variable size as well as piles of debris and more.

Humanoid robots will be especially suitable for applications that require social interaction
with humans, in order to increase the person’s trust and comfort. At the same time the robots’
bipedal morphology will increase the system’s reachable workspace compared to wheeled
robots, allowing, for example, to step in and out of cars or to reach objects higher up on the
kitchen shelf.

Other tasks will involve the transportation of heavy loads or the crossing of more complex
terrains during an exploration task. In such applications the bipedal design will not guarantee
the minimum stability and robustness level required for successfully completing the task. In
such cases other platforms with a higher number of legs, like quadrupeds and hexapods, will
be likely preferred to humanoid robots.

The wide range of other scenarios that I did not mention above will be probably performed in
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(a) Typical after earthquake scenario
(b) Firefighter climbing up a steep stair
with heavy equipment.

Figure 1-1: Disaster reponse scenarios.

collaboration with other robotic platforms such as aerial (drones, quad-copters and others),
wheeled (such as autonomous cars or wheeled robots with human upper body) or caterpillars.

A large amount of industrial and house-keeping tasks will be performed by legged platforms
equipped with specialized end-effectors. Such end-effectors might include wheels (for a mixed
wheeled-legged locomotion on partially structured terrains), magnetic tools (for grasping tools
or for climbing up metallic walls), prehensile grippers/hands and more.

In this thesis I will focus on the locomotion capabilities of legged robots with a special
attention for quadrupeds. All the proposed algorithms, however, can be extended to a large
variety of legged platforms with little variations. I will report the challenges and difficulties
related to the implementation of locomotion algorithms on real robotic hardware, such as the
presence of noisy sensor signals, the deterioration of the mechanical parts and the difficulty
of properly building an internal map of the surrounding environment.

1-1 Motivation

Having a legged robot move in the real world is a complex task that requires a considerable
effort from the technological point of view, especially in making sure that all the building
blocks are safe and incapable of causing any damage to humans and to themselves.

From the mechanical point of view this translates in having a robust design, possibly per-
formed in a process made of many consecutive iterations, that ensures energetic efficiency,
mechanical robustness and maintainability. All electrical parts should be well isolated and
possibly water proof, capable of absorbing shocks and vibrations. The dynamics of the ac-
tuators should ensure energetic efficiency, it should be accurately modeled and it should not
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(a) Mountain goats walking on a rocks wall. (b) Human climbing up a bouldering gym.

Figure 1-2: Animals and humans can reach unmatchable climbing skills compared to their robotic
counterparts.

be affected, when possible, by unmodeled nonlinear phenomena such as static and viscous
friction, stiction, temperature and wear. All sensors should allow repeatable measurements,
they should have as little noise as possible and accurate calibration.

From the software perspective, all the components should guarantee the reading of all the
sensory data without loss of packages, and all the required new motor commands should
be delivered on schedule in order to avoid unexpected and potentially dangerous behaviors.
All the software building blocks should then be organized in various layers of increasing
complexity, with the lower layers taking care of the most basic tasks that ensure the safety of
the system (e.g., input hardware layer for reading sensor data and output for writing the new
reference signals to the motors) and the higher layers performing task of increasing abstraction
that usually may require a bigger computational burden.

In consistency with this criterion, researcher started dividing the software for locomotion of
legged robots into two fundamental blocks which are the motion controller and a motion
planner. The latter is usually responsible for choosing the reference motion command (joint
trajectory) that all the actuators should perform in order to achieve the desired motion during
a given time horizon. The former makes sure, using an appropriate feedback policy, that
the current reference command is actually achieved by the actuators. The final goal of the
controller and the motion planner are similar and could, theoretically, be performed by one
unique block rather than two separate modules. This would correspond to optimizing the full
robot description over an arbitrary time horizon and environment but it would also require,
however, levels of computational efficiency that are not yet available at the time of writing of
this thesis. The separation of the motion generation problem between these two blocks allows
to parallelize the high-level goals such as the selection of a proper body trajectory from the
platform-specific decisions such as the reference trajectory of the individual joints.

These two distinct targets impose considerably different requirements to the controller and
to the motion planner. The controller may use different combinations of feedback and feed-

Doctor of Philosophy Thesis Romeo Orsolino



4 Introduction

forward policies to select the value of the control signal to be sent to each actuator of the
system at the next time instant. Besides that, the controller must also make sure that
the reference command is delivered at the predefined frequency to the motor. Every single
actuator is indeed controlled by a further low level controller (typically a PD controller)
which makes sure that the joint tracks the reference position and/or force trajectory with the
desired compliance. A delay in the sensors reading or in the delivery of the control signal
may considerably increase the tracking error and thus jeopardize the execution of the desired
motion. For this reason high-bandwidth real-time safe control is crucial for the success of the
overall locomotion task.

The motion planner of a legged robot, on the other hand, must guarantee that the reference
command will lead the platform to joint configurations that allow the achievement of higher
level locomotion requirements such as a given forward speed provided by the external operator
or the tackling of an obstacle. As a consequence, the planner will determine trajectories of
the main physical quantities of the system over a larger time horizon than just the controller
loop interval and, because of the resulting increase of computational burden, it may work at
a lower frequency compared to the motion controller. Motion planners are usually designed
using pure feed-forward policies based on the initial state of the robot; in this case the only
possible implicit feedback action consists of the continuous feed-forward re-planning based on
the actual states of the robot.

1-2 Contributions

This thesis discusses a number of novel contributions that have been recently published in
peer-reviewed conference and journal papers of the robotics community:

1. Generation of an omni-directional bounding gait tested on HyQ by combining the fully-
dynamic limit-cycle stability criterion for the sagittal plane of the robot and the semi-
dynamic Center of Pressure-based criterion for the heading speed [1].
This article has been awarded the Best Student Paper Award at the 20th International
Conference on Climbing and Walking Robots (CLAWAR) held in Porto, Portugal, in
September 2017;

2. Projection of the torque limits of an actuated kinematic-tree robot into lower dimen-
sional spaces (more specifically, to the space of centroidal accelerations) [2]. Thanks to
this contribution it was then possible to show how to assess the feasibility (static sta-
bility and actuation consistency) of a legged robot with multiple non-coplanar contacts
with the environment. Besides this I also showed how to employ the above feasibility
criterion for online generation of trajectories for legged locomotion on complex terrains.
This work has been published in IEEE Robotics and Automation Letters (RA-L) and is
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has been presented at IEEE International Conference on Intelligent Robots and Systems
(IROS) held in Madrid, Spain, in October 2018;

3. Achievement of a map-based online actuation-consistent foothold planner for static
locomotion in multi-contact scenarios. In this regard, the computation of the local
actuation region and of the global actuation region are described. These may also
represent intuitive tools for the evaluation of the locomotion capabilities of robots in
complex terrains subject to heavy payloads.

Point 1. contributes to attesting the importance of combining mathematically (and dynam-
ically) solid motion generation strategies such as limit-cycles analysis with heuristics aimed
at reducing the system’s complexity.

In point 2., thanks to a mapping from joint torques to centroidal accelerations, a new ap-
proach for motion generation is implemented which is able to devise Center of Mass (CoM)
trajectories that are guaranteed to be friction- and actuation-consistent.
This approach allows to further extend the above mentioned principle of separation between
motion controllers and motion planners: the motion planner, in this new strategy, only op-
timizes kinematic quantities such as the CoM and the end-effectors trajectories that are
guaranteed to be consistent with the actuation limits of the system (satisfy the joint torque
limits) and with the configuration of the contact points. Thanks to this ”exists or not” strat-
egy, the planner does not need anymore to explicitly optimize neither the joint torques nor
the contact forces, thus considerably reducing the amount of decision variables in the for-
mulation of the Trajectory Optimization (TO) problem. Being the resulting CoM and feet
trajectories verified to be feasible, it will be then the task of the motion controller to find a
suitable reference set of contact forces and set of joint torques able to properly track those
trajectories.

Point 3. further extends the above method by formulating a motion planner that maps the
actuation torque limits to linear 2D sets of CoM feasible positions. The reduced dimensionality
of the projected set, obtained by assuming static conditions (only gravity acting on the robot),
provides a fast and intuitive tool for assessing the feasibility of a given static configuration.

1-3 Outline

Chapter 2 gives an overview of the most widespread approaches for the generation of motion
plans for legged locomotion. The problem is divided into two subproblems which are: (a) the
motion planning strategies employed for legged robots and (b) the possible stability and/or
feasibility criteria used to define a stable locomotion task.
The two above topics include many different options that may be combined and merged in
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different ways; Chapter 2 attempts to explain some of this possibilities and the criteria that
must be considered for the definition of new formulations.
Chapter 3 focuses on a specific quadrupedal gait called bounding gait. A software framework
is explained for the generation of the bounding gait on the Hydraulically actuated Quadruped
(HyQ) robot, based on a mixture of heuristics and simplified models.
In Chapter 4 we discuss a simplified model that projects the feasibility constraints of the
motors actuation limits into limits on the wrench space of the robot’s CoM. Chapter 5 then
discusses a projection of the actuators limits into CoM admissible (x, y) positions that are
used in a TO implementation.
Chapter 6 concludes this dissertation by discussing and summarizing the work described and
attempts to predict some future developments based on this dissertation.
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Chapter 2

Related Works

This chapter describes the main existing literature regarding two key aspects of the genera-
tion of legged robots locomotion, these are the dynamic modeling strategies and the stability
analysis. We divide the former in three main categories which are heuristics, model-based
optimization and data-driven approaches; the latter topic is instead composed of multiple
criteria that can be used in the motion planning formulation in order to evaluate and control
the robots balancing and stabilization capabilities. The choice of the stability analysis tool is
often dependent on the selected dynamic model.

In Section 2-1-1 we introduce the main challenges related to the use of heuristic strategies for
motion planning for legged robots in rough terrains. Section 2-1-2 then describes the broad
family of model-based optimization strategies that can be employed for tackling the same
problem, these methods often are referred to under term of Trajectory Optimization (TO)
and can be either based on full robot’s models or on the reduced dynamic models. In Section
2-1-3 we will briefly discuss some of the state of the art Reinforcement Learning (RL)-based
strategies for motion generation of legged robots [3].

2-1 Motion Planning Strategies for Legged Locomotion

In this Section we divide the main motion planning strategies for legged robot among three
categories that differ in the fundamental perspectives that they assume to tackle the problem,
these are heuristics (Section 2-1-1), model-based motion planning (Section 2-1-2) and data-
driven approaches (Section 2-1-3).

Heuristics is the family of approaches that aim at having a robot perform tailored motions for
a considered application, based on the researcher’s experience and experimental observations.
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Heuristic strategies have been used for decades in the field of robotic legged locomotion and
they still represent now a very useful tool for solving issues that can hardly be formalized
mathematically.

Model-based optimization represents a powerful and elegant method for the generation of
motion plans for a wide variety of tasks and challenges ranging from robotic manipulation
and grasping to wheeled navigation to legged locomotion in complex environments and more.
Optimization is always performed using a model, this can either be a simplified model or a
complete description of the physical quantities of the system; in this case, in the domain of
legged locomotion, we talk about whole-body models. The goal of such models is to describe
the motion of the joints given some actuator torque.
Depending on the resulting complexity of the overall formulation, the optimization problem
can result in very different solve time and can be affected by the existence of local optimal
solutions. The huge amount of possible formulations gives origin to a variety of optimization
problems’ families which we here roughly classify between convex and non-convex programs.

Data-driven approaches for legged robots represent a large family of strategies that aims at
generating motion plans by looking at the collected data that refer to the dynamic evolution
of the system in the past time intervals. This is often referred to under the broad term of
Machine Learning (ML), in that the algorithm attempts to avoid past mistakes and to take
the best decision based on the available set of data. ML algorithms can be broadly classified
between supervised and unsupervised learning. In the former case a training data is available
(generated by an external evaluator) that can be used for teaching the algorithm which are
the good and the bad samples. In the latter case (usually harder) no training set is provided
to the algorithm and, therefore, has to figure out on its own what are the discriminant features
that allow it to get as close as possible to the achievement of the task.
A successful ML approach in the motion planning setting is the Reinforcement Learning (RL)
which can be seen as an extension of the theory of dynamic programming to the cases where
a model of the environment is given but an analytic solution cannot be found [3]. In these
cases, RL assumes a Markov Decision Process (MDP) rather than deterministic models.
The above mentioned concepts will be reported and further developed in the following Sec-
tions.

2-1-1 Heuristics

Heuristics is defined as a way of solving problems by discovering and learning things experi-
mentally. In other words, heuristics, can be seen as pragmatic approach for solving an issue,
or a subset of it, using a strategy that was experimentally noticed to work well in practice.
Often heuristic methods are only partially backed by the theory and, for this reason, can be
hardly generalized to different systems or to other engineering challenges.
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(a) Telescopic 3D Hopper. (b) Walking biped.

(c) Trotting quadruped.

Figure 2-1: Raibert’s robots developed at the Leg Laboratory at CMU and MIT.

Every branch of engineering is filled with heuristic formulas and so is the field of legged robots
locomotion. Raibert’s seminal works since the early 80’s can be considered a tremendous
example of heuristic approaches that allowed robots to achieve unprecedented milestones [4].

In Fig. 2-1 we can see Raibert’s 3D Hopper (left), the biped (center) and quadruped (right),
examples of the robots developed at the Leg Laboratory at Carnagie Mellon University
(CMU), first, and at the Massachussets Institute of Technology (MIT), later, starting from
1980.
All these robots performed highly dynamics motions thanks to simple principles such as the
neutral point [5] (see Fig. 2-2a). This can be seen as the point pdes ∈ R2 on the flat ground
where the robot should place its foot in order to cause no acceleration to its own body:

pdes = pref + ċxy
∆t
2 + k(ċxy − ċxy,des) (2-1)

where:

• pref ∈ R2 is in this case the projection of the hip position on the flat ground;

• ċxy ∈ R2 is the actual linear horizontal velocity of the robot;

• ċxy,des ∈ R2 is the desired linear horizontal velocity of the robot;

• ∆t is the duration of the support phase;

• k is a gain.

This definition is straightforward for robots with one single leg such as the 3D hopper, how-
ever, in its first definition, it could not be easily generalized for multi-legged systems. Another
brilliant instance of heuristics, also proposed by Raibert, was to extend the neutral point to
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(a) Placing the foot in the neutral point ensures
a symmetric stance phase at steady state.

(b) Virtual legs for different quadrupedal gaits
for pairs of legs moving synchronously.

Figure 2-2: Sketch of the neutral point (left) and of the virtual leg for trot, pace and bound
gaits (right).

bipedal and quadrupedal gaits where pairs of legs move synchronously and can therefore be
seen as one unique leg called virtual leg [6]. This strategy works well for all those quadrupedal
gaits, such as the trot, pace and bound, where the diagonal, rear, front or ipsilateral legs move
in pairs in perfect unison and can therefore be considered as one unique leg placed in the mid-
dle (see Fig. 2-2b).

Figure 2-3: The Spring
Flamingo robot used to
test the virtual model
(VM) control strategy.

Another example of heuristic strategy for the global stabilization
of legged robots is the well known Virtual Model (VM) control in-
troduced by Pratt et al. [7, 8]. This strategy consists in having a
robot generate virtual forces that arise from the interaction between
the robot and a virtual component. The virtual component can be
a trivial spring or damper element in the operational space (task
space) [9] or an more complex (nonlinear) arbitrary element. Fig.
2-3 represents the Spring Flamingo, a planar robot equipped with
Series Elastic Actuators (SEAs) which was used for the VM proof of
concept. As depicted in Fig. 2-4 simple virtual springs and dampers
could be used to keep a desired set point height (Fig. 2-4a) or robot
velocity (Fig. 2-4b).

The neutral point, the virtual leg and the virtual model are heuristic
approaches used to control the global stability of the legged plat-
form. Heuristics, however, is often also used to easily solve smaller
subtasks of the locomotion process like the definition of a swing
foot trajectory, the distribution of the velocities on a redundant leg
(through weighting matrices) or the selection of a suitable reference

robot height value. Heuristics is also, for example, the way the duration of the different
phases of a movement can be chosen based on observation of biological systems (e.g., stance
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phase duration of a running cheetah [10]) or the way the orientation of a rough terrain can
be estimated [11]. Another example of heuristics can be found in the choice of the controller
gains (e.g., the Proportional and Derivative (PD) gains of a VM controller).

(a) A granny walker mechanism can be seen as a
simple virtual model made of springs and damper
elements.

(b) A virtual damper element that pulls the
robot to track a given horizontal speed can be
seen as chasing a hare in a dog track.

Figure 2-4: Sketch of the granny walker mechanism (left) and of the dog track bunny mechanism
(right) showcasing the concept of virtual model control.

Heuristics, as we will see in the following Sections, is often combined with simplified mod-
els, model-based optimization and ML methods to simplify the system and to decouple the
subtasks: the computation of the swing leg trajectory, for example, can be considered as a
subtask of the walking problem and, under the assumption that the leg’s inertia is negligible
compared to the one of the trunk, it can be performed after that the decision of the desired
footholds has been taken in a decoupled manner (i.e., independently from trajectory of the
Center of Mass (CoM)). Another example of this combined approach is the heuristics used
for the selection of the values of the weighting matrices employed in the cost function of TO
problems where each weight defines the relative priority of all the individual objectives.

As discussed above, heuristics can work extremely well and, for this reason, it is still widely
used in the modern strategies for the generation of legged locomotion. In the same time,
however, heuristics is strongly related to human intuition and can hardly be formalized and
extended to different conditions (to more complex gaits for example). From this point of view,
simplified dynamic models play their crucial role, focusing on the most relevant dynamics of
the system and attempting to build a bridge between the experimental observations of the
high level behaviors (captured by the heuristic policies) and the model-based optimization
approaches (more theoretically grounded and, therefore, more easily generalizable).

2-1-2 Model-Based Optimization

Model-based optimization is broad a term that encompasses a large family of underdetermined
mathematical formulations that share the redundancy of decision variables with respect to
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the number of constraints (so called hard constraints) that appear in the model. The resulting
existence of multiple solutions usually leads to the addition of a further objective function that
discriminates the optimal solution in the set of feasible values defined by the hard constraints.
When the objective function is not given the problem then turns into a feasibility problem
where the goal is to simply find a feasible value that satisfies all the given hard constraints.
Depending on the properties of the constraints (i.e., the dynamic model encoded as state
equations) and the const function to be optimized, it can be divided in various sub-families
such convex and non-convex programs. Convex programs are characterized by convex ob-
jective functions and convex domains. All the programs that do not meet this requirements
fall in the class on non-convex programs. Formulations with convex constraints and concave
objective functions can always be transcripted into convex programs. Convex programs can,
in turn, be split between as Linear Programs (LPs), Quadratic Programs (QPs) or convex
Nonlinear Programs (NLPs), each of which offers different solving solutions.
More categorizations can be performed based on the following elements: continuous or discrete
systems, continuous or discrete state spaces (e.g., Mixed-Integer Programs (MIPs)), finite ver-
sus infinite dimensional state spaces, continuous versus discrete control sets, time-variant or
time-invariant systems, controlled or uncontrolled/autonomous dynamic systems (e.g., the
ballistic trajectory of a robot’s CoM during a flight phase), stable or unstable dynamics and,
for example, deterministic versus stochastic systems [12, 13, 14].

In the large class of convex programs, the easiest type of formulation are arguably the positive
definite QPs (quadratic cost) with linear equality constraints: this might be considered to
be even simpler than the LPs considering that the one global optimal solution can be found
analytically. LPs and generically constrained QPs (quadratic cost and linear equality and/or
inequality constraints) add one degree of complexity because the solution can not be found in
closed form but we still have the guarantee that there exists one unique optimal solution which
is therefore also the global solution. LPs (linear cost functions and linear inequality and/or
equality constraints) also hold no local optimum (i.e., they only own one global optimum)
and, if the polytope made by the constraints of the problem is bounded, then the solution
lies on one of the boundaries of that polytope. Based on this property, efficient solvers can
be synthesized that ensure LPs to be solved faster than any other formulation presenting a
comparable amount of decision variables (e.g., Dantzig’s Simplex algorithm) [15, 16].

As anticipated above, both LPs and QPs fall in the larger family of Convex Programs [17]
characterized by convex objective functions and convex domains of the decision variables.
Thanks to the recent advancements of the hardware performances and in the theory of math-
ematical programming, convex programming can be considered a mature field that already
presents many real world applications with the availability of various off-the-shelf solvers spe-
cialized for the different types of convex programs.
Thanks to the maturity of the convex optimization community, it has become possible to
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enlarge the size of decision variables and to endow the optimization programs with model
predictive capabilities by adding new variables relative to future states of the systems over a
discretized time window [18]. The algorithmic and computational speed-up of modern solvers
has also allowed Model Predictive Control (MPC) [19], typically applied to slow dynamical
systems such as chemical plants, to enter the domain of fast robotic applications such as
robotic locomotion [20, 21].

Inside the non-convex family fall all those mathematical programs made of either nonlin-
ear objective functions or nonlinear/concave feasible sets. Although there exist nonlinear
programs that are also convex, most NLPs present a complex non-convex structure that im-
plies the existence of multiple local minima besides the global minimum. For this reason
the performances of most deterministic solvers, such as Interior Point (IP) and Sequential
Quadratic Programs (SQP), are affected by the initial starting point and are not guaranteed
to find the global optimal solution. Stochastic solvers can represent an alternative that pro-
vides increased global convergence and reduced sensitivity to the initial guess compared to
deterministic solvers at the cost of a higher solve time [22].

After this brief overview over the different types of optimization problems, we then explain
the properties of the main dynamic models that appear in the modern locomotion planning
research community and which are used for the formulation of Optimal Control Problems
(OCP), MPC and TO programs. We will divide such dynamic models in two main classes:
full and simplified models.

Full Dynamic Models (or whole-body models) are complete and accurate descriptions of the
dynamic properties of the considered robotic platform. Because of the high number of involved
decision variables and of the nonlinearity of the constraints (e.g., nonlinearities in the end-
effector Jacobian matrices, in the inertia matrix and in the Coriolis and gravity terms with
respect to the joint configuration) this model is currently considered to be too complex to be
used in MPC and TO settings (although it can be used in a OCP with no preview for control
[23]).

Simplified Dynamic Models represent an intermediate standpoint between the practical effec-
tiveness of heuristics and the accuracy provided by whole-body models. Simplified dynamic
models, unlike heuristics, are backed up by measurements and data extracted on biological
systems and can therefore, for this reason, be considered a mathematical description of the
real underlying dynamics of the phenomenon they describe rather than a prior knowledge
imposed by the developer. Many types of simplified (or reduced) models have been proposed
in the past decades: in the following of this Section I will briefly list few of such models
and focus on those which are most relevant for this dissertation, i.e., the Linear Inverted
Pendulum (LIP) and the Centroidal Dynamics.

A) Full Dynamic Models
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Legged robots are floating articulated base kinematic trees with a large number of joints. A
joint is a kinematic constraint between two bodies [24, pag. 91]; the most employed types
of mechanical joints for modern humanoid and quadruped robots are prismatic and revolute
joints, that means that the number of motion freedoms ni ∈ [0, 6] allowed by every single
i− th joint is one (ni = 1) apart from the virtual base joint (i = 0) which does not constrain
any motion (n0 = 6). The virtual base joint is indeed a fictitious joint with six degrees of
motion that connects the trunk of the legged robot (also called floating base link) to the world
frame. As a consequence, for most of the legged robots developed in the modern robotics
community, the total number of Degrees of Freedom (DoFs) of the system N corresponds to
the number of actuated joints n plus the six un-actuated DoFs of the floating base:

N =
n∑
i=0

ni = n+ 6 (2-2)

(a) Fixed-base serial mechanical chain. (b) Floating-base tree-structured me-
chanical chain.

Figure 2-5: Coordinate frames and nomunclature used to describe articulated serial and tree-
structured kinematic chains.

The position of every individual joint of the system is fully described by a vector qi ∈ Rni

which describes its position and orientation relative to the frame of the parent joint. As
mentioned above, most modern robots are made of joints that only allow one motion, meaning
that their position can be described using one scalar coefficient qi with the exception of the
virtual base joint q0 (or qb). This can therefore be described by a linear position x ∈ R3 and
an angular orientation R ∈ SO(3) with respect to the world frame:

q0 = qb = (x,R) ∈ SE(3) (2-3)

where SE(3) = R3×SO(3) is the special Euclidean group and SO(3) is the special Orthogonal
group1. Elements of the SO(3) group can be described in multiple ways such as Euler angles

1The special Orthogonal group refers to all the 3× 3 matrices R such that: det(R) = ±1 and R−1 = RT
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2-1 Motion Planning Strategies for Legged Locomotion 15

θ ∈ R3 or the Euler parameters, or quaternions, η ∈ R4: the former represents a minimum set
of parameters (i.e., a minimal representation) needed to describe an orientation but is prone
to singularities; the latter, on the other hand, is a singularity-free redundant set of parameters
but it cannot be directly obtained by integration of the angular velocity and, for this reason,
adds a further complexity in the computation because of the resulting different number of
elements in the position qb and in the velocity vector q̇b [25, pag. 41]. Alternatively, angular
orientations can also be represented by means of rotation matrices and exponential maps [26].

The canonical form of the dynamic equation of motion of the full robot (i.e., whole-body
model) can be obtained by computing the Lagrangian of the system (sum of the kinetic and
potential energy terms of each link) [15, 27]:

L(q, q̇) = T (q, q̇)− U(q) (2-4)

where T represents the total kinetic energy and U the total potential energy of the system.
The vector q = [qTb , q1, . . . qn]T ∈ SE(3)× Rn represents a point in the robot’s configuration
manifold while q̇ = [q̇Tb , q̇1, . . . , q̇n]T ∈ Rn+6 is the generalized joint space velocity vector. The
vector q̇b ∈ R6 represents the joint space velocity of the floating base (refer to the Notation
section for a partial list of the main symbols employed in this dissertation and their meaning).
Opposed to the joint-space velocity, the spatial velocity of each link can be written as:

νi =
[
ẋi
ωi

]
∈ R6 (2-5)

The spatial notation allows us to describe generic motions which combine arbitrary rotations
and translations2 (e.g., in [25, 28, 24, 29]). The kinetic energy of the system can be written
as a function of the links spatial velocities:

T =
n∑
i=1

Ti. (2-6)

where:
Ti = 1

2miẋTi ẋi + 1
2ω

T
i Iiωi =

n∑
i=1

1
2ν

T
i Miνi. (2-7)

where Ii ∈ R3×3 is the link’s angular inertial expressed at the world frame origin:

Ii = Icomi +mi[ci]× [ci]×T (2-8)

The matrix Mi ∈ R6×6 is the symmetric, positive-definite, spatial inertia matrix of the i− th
link:

Mi =
[
mi13 mi[ci]×T

mi[ci]× Icomi

]
(2-9)

2Notice that the decision of concatenating the linear position first and the angular velocity later is purely
arbitrary and, with an appropriate rearrangements of all the terms, it leads to the same results as if the order
of the two terms was switched. As an abuse of notation, we also define as wrench a quantity that is not the
dual of a twist, but a 6D force/moment vector.
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and Icomi ∈ R3×3 is the link angular inertial in the link’s CoM frame3.
Exploiting the fact that:

νi = Jiq̇i (2-10)

we can further develop Eq. 2-7 and obtain the total kinetic energy of the system [27]:

T (q, q̇) =
N∑
i=1

1
2 q̇Ti JTi MiJiq̇i = 1

2 q̇TMq̇ (2-11)

where M ∈ R(n+6)×(n+6) is the robot’s joint-space inertia matrix of the system and Ji ∈ R6×ni

is a joint type dependent matrix (e.g., in the case of the floating base joint then J0 = 16)
that maps joint-space velocities into task space velocities.

The potential energy of the overall system can instead be expressed as:

U(q) =
n∑
i=1

mighi(q) (2-12)

where hi(q) is a function that provides the links’ height parallel to gravity.

By solving the Lagrange Equation:

d

dt

ϑL(q, q̇)
ϑq̇ − ϑL(q, q̇)

ϑq = τ (2-13)

we obtain the dynamic equation of motion in canonical form (check [27] for the full derivation):

M(q)q̈ + C(q, q̇) + g(q) = Bτ (2-14)

where we write M(q) to point out the dependency of the joint space inertia matrix from
the robot’s configuration. C(q, q̇) ∈ Rn+6 accounts for the Coriolis terms and g(q) ∈ Rn+6

considers the effect of gravity acting on the links’ mass. B ∈ R(n+6)×n is a selection matrix
that selects the torque variables referring to the unactuated floating base.
We can also add one more term to Eq. 2-14 in order to include possible external wrenches f
being applied to the robot:

M(q)q̈ + C(q, q̇) + g(q) = Bτ + JT (q)f (2-15)

J(q) ∈ Rm×(n+6) is the Jacobian matrix mapping the joint space velocities into spatial
velocities. The same mapping (transposed) is used to map the external wrenches f =
[wT

1 , . . .wT
nc

]T ∈ Rm (contact forces between feet and the ground or external pushes/dis-
turbances) into joint-space generalized torques; m = 6nc where nc is the number of external
wrenches w ∈ R6 acting on the robot (e.g., nc = 2 in the case of a humanoid robot being
in double support without any other contact with the environment). In the case of pure

3If the link frame i is located in the link’s CoM and it is oriented along the link’s principal axes, then the
matrices Icom

i and Ii become 3× 3 diagonal matrices and Mi becomes a 6× 6 diagonal matrix.

Romeo Orsolino Doctor of Philosophy Thesis



2-1 Motion Planning Strategies for Legged Locomotion 17

external forces with no torque component, such as in the case of quadruped robots with point
feet, we have instead: m = 3nc. Because of the intermittent nature of legged locomotion,
the dimension nc changes at every switch of contact (e.g., feet touch down or take off), for
instance: nc = 0 at flight phase with no external disturbances. This detail makes of Eq. 2-15
a system with switching dynamics which must be dealt with special care in optimal control
and motion planning.

It is to be noticed that Eq. 2-15 can only be used for systems whose state variables are
not affected by the existence of possible singularities in the minimal representations of the
orientation manifold SO(3) (see Appendix A-1). This is the case, for example, for fixed-
based industrial manipulators. For systems that are instead affected by this issue, such as the
floating-base platforms, a new generalized velocity vector s ∈ Rn+6 must be defined such that
s = [νb, q̇1, . . . , q̇n]T where νb = ν0 is the spatial velocity of the floating base joint. Equation
2-15 can thus be re-written in the following form:

M(q)ṡ + C(q, s) + g(q) = Bτ + JT (q)f (2-16)

which explicitly considers the non-integrability of the angular velocity. Eq. 2-16 can be
expanded as in: [

Mb Mbj

MT
bj Mj

]
︸ ︷︷ ︸

M(q)

[
ν̇b

q̈j

]
︸ ︷︷ ︸

ṡ

+
[
cb
cj

]
︸ ︷︷ ︸
C(q,s)

+
[
gb
gj

]
︸ ︷︷ ︸
g(q)

=
[
06×n

In×n

]
︸ ︷︷ ︸

B

τ +
[
JTb
JTq

]
︸ ︷︷ ︸
J(q)T

f . (2-17)

in order to highlight the dynamic coupling between the underactuated floating-base (first line)
and the actuated joints of the kinematic tree (second line).

The formulation given above can be employed equally well for dynamic modeling of humanoids
(see, for example, Fig. 2-6), quadrupeds (see, for example, Fig. 2-8) as much as of any other
tree-structured robotic platform.
The large number of variables described in this Section and the nonlinearity of the involved
terms (e.g., see the bilinear and quadratic terms in the computation of the joint space inertia
matrix M(q) in Eq. 2-9) makes it hard to formulate real-time, or online, optimization-based
motion planners based on the described model. Full models have been, however, largely em-
ployed in the synthesis of whole-body controllers capable of optimizing in real-time a suitable
control input (joint torques) for given reference feet and CoM trajectories [23, 30, 31, 32].

B) Centroidal Dynamics

The centroidal dynamics describes the dynamics of the whole robot, at a given configuration,
as a single rigid body. Is is equivalent to the full-body formulation in terms of CoM dynamics
and inertia [29]. It exploits and extends the fundamental property of the CoM (of Center of
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(a) Atlas, 2012 (b) Atlas, 2018 (c) Valkyrie, 2015

Figure 2-6: Humanoid robots examples:

(a) Atlas developed by Boston Dynamics, 2012 [33];

(b) second version of Atlas developed by Boston Dynamics, 2018 [33];

(c) Valkyrie developed by NASA, 2015 [34].

Gravity (CoG)) defined as the virtual point where all the mass of the robot can be considered
to be lumped without changing the dynamic behavior of the system as a whole (disregarding
the joints dynamics as if they were instantaneously "welded" together). As a consequence, we
can assume that the gravity force acting on a robot is acting on the CoM as an applied force
(rather than acting on all the bodies as a distributed vector field).
A way to compute the centroidal dynamics is to map the spatial momentum of each single
link of the robot into the centroidal frame:

hi =
[

li
ki

]
= Miνi ∈ R6 (2-18)

The centroidal frame is a reference frame that is always oriented like the inertial world frame
and whose origin is attached at the time-varying CoM of the robot. The quantities li ∈ R3

and ki ∈ R3 in Eq. 2-18 represent, respectively, the linear and angular momentum of the link.
This ”joints-to-centroid” mapping is enhanced by the Centroidal Momentum Matrix (CMM)
AG(q) [35]:

hG =
[

lG
kG

]
=

n∑
i=1

iXT
Ghi =

n∑
i=1

iXT
GAi︸ ︷︷ ︸

AG(q)

q̇ = AG(q)q̇ (2-19)

where lG ∈ R3 is the centroidal linear momentum kG ∈ R3 is the centroidal angular momen-
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tum. AG(q) ∈ R6×(n+6) directly maps the joint space velocity q̇ ∈ Rn+6 into the robot’s
CoM spatial momentum hG ∈ R6. The matrix Ai = MiJi ∈ R6×(n+6) represents the link’s
momentum matrix expressed in the link’s frame and iXG ∈ R6×6 is the projection matrix
from centroidal to link coordinates. Ji is the Jacobian matrix that maps joint-space velocities
into task space velocities as defined in Eq. 2-10.
By inspection of the CMM we can notice an inherent property of floating-base systems: the
first three rows of AG(q), corresponding to the linear momentum, can be written as a function
of the sole position q and represent, therefore, a holonomic constraint; the last three rows,
instead, require the knowledge of both q and q̇ and represent, therefore, a non-holonomic
constraint (see Appendix A-2).

The Trasformation Diagram (as in [35]) represents a useful tool for visualizing the most
meaningful available transformation matrices that can be used to switch among the three
most relevant spaces:

• joint configuration space (number of dimensions: N = 6 + n);

• system space (number of dimensions: N = 6n);

• task/operational space (number of dimensions: N = 6).

The centroidal dynamics modeling holds special properties that make it an intermediate
tool between the full dynamic description, explained above, and the simplified models. In
particular, it allows to map the main dynamics of the system to a lower dimensional space
than the joint space (from n+ 6 to 6 DoFs) without trading off the accuracy of the described
physical quantity. It is, in conclusion, especially well suited for applications such as the
planning and control of the linear and angular momentum of humanoid robots (whose links’
mass can not be neglected, e.g., Fig. 2-6).

C) Simplified Dynamic Models

Simplified models are significantly different from the models explained in the previous section
and they can often be seen as heuristic attempts to describe the main dynamics of the system.
As a matter of fact, the delimiting line which distinguishes between heuristics and simplified
dynamic models is not clearly marked [36]: both approaches often lead to simple control
strategies that try to capture the main dynamics of the robot during locomotion. Their
substantial difference, however, can be found in the amount of quantitative experimental
data recorded on real-life biological organisms that demonstrates the descriptive quality of
the simplified models. Reduced models, as a matter of fact, are bound to the biological
counterparts such as humans or animals by extensive research in biomechanics that has proved
how well they describe the behavior of the animal they refer to [37, 38, 39].
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In other cases, unlike heuristic strategies, simplified models for legged locomotion are often
derived by generic principles of fundamental physics such as the energy and momentum
conservation principles [40]. Starting from these generic rules, simplifying hypotheses are
then proposed to reduce the math and fit the equations of the specific locomotion task to be
tackled.

This concept of simplified model is thoroughly developed by Full et al. [41] under the name
of template while the mechanism that connects this to the real model is called the anchor.
Templates are defined in lower dimensional spaces (e.g., the task/operational space) compared
to the original system space. An under-determined task in the system space may thus become
fully determined in the space of the template. An example of this strategy is the LIP which
captures the pendular nature of human walking. The height restriction implied in the LIP
reduces the DoFs that can be exploited to generate a locomotion plan and the linear telescopic
leg avoids the nonlinearities involved in the kinematics of the real legs. Motion plans can then
be efficiently optimized with an LP and the solution can be mapped back to the full robot
model resorting to the full kinematics (i.e., the anchor). Other examples of templates that can
be observed in the locomotion pattern of a wide variety of animals ranging from cockroaches
to kangaroos are, for example, the Spring Loaded Inverted Pendulum (SLIP) and the Lateral
Leg Spring (LLS) model [42].

Keeping the templates idea in mind, strategies for generating locomotion behaviors on legged
robots have multiplied in the past decades. A key advantage of the approaches based on
heuristics and/or templates compared to the full model description is computational efficiency,
that allows to quickly recompute a new control input (analytically, in closed form, solving a
LP or a QP) whenever an unexpected disturbance interacts with the system. The price to be
paid for this computational speed up is, however, sub-optimality.
The increased safety and robustness that comes with the ability to replan online (or, even
better, in real-time) has enabled hardware implementation on possibly any robotic platform.
In the rest of this dissertation we will refer to the ability to replan online as interactivity.

The interactivity requirement of motion planners plays a key role in the achievement of appro-
priate robustness levels for hardware implementation; even the most complete and descriptive
locomotion formulation will not be useful for robot implementation if it’s not fast enough to
allow online replanning and thus react to unexpected events or interact with external agents
within an acceptable time delay.
The goal is therefore to find the most descriptive locomotion model that complies with the
requirement of online execution. This represents a difficult trade-off among:

• the completeness of the employed dynamic model;

• the duration of the time window that defines the predictive capabilities of the planner;

• the available solve time allowed to the planner by the real-time (or online) requirement.
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(a) LIP model (b) LIP model + flywheel (c) LIP model + flywheel + foot

Figure 2-7: Examples of simplified models for legged locomotion: (a) the LIP, (b) the LIP plus
flywheel and (c) the LIP plus flywheel and foot. The variables c ∈ R3, z ∈ R2 and ξ ∈ R2

represent, respectively, the CoM, ZMP and the CP of the model.

The Linear Inverted Pendulum The LIP represents a powerful bridge between the Zero
Moment Point (ZMP) z ∈ R2 and the (nonlinear) inverted pendulum, a commonly used model
for describing the humanoid balancing problem. Given the robot’s CoM position c ∈ R3 in the
inertial frame, we can express it’s projection cxy ∈ R2 on the (x, y) plane (plane orthogonal
to the direction in which gravity acts) as:

cxy = Pc (2-20)

where P is the projection matrix:

P =
[
1 0 0
0 1 0

]
(2-21)

The LIP model can then be expressed in the following form:

z = cxy −
1
ω2 c̈xy (2-22)

where ω =
√
g/cz is the natural frequency of the LIP. This model was introduced by Kajita

et al. [43, 44]. Eq. 2-22 holds under the assumption of zero vertical acceleration, no angular
dynamics, infinite friction and it represents a simple linear relation between the ZMP and
the CoM dynamics. The ZMP is defined as the point on the (flat) ground where the moment
produced by the inertial and gravitational forces is parallel to the surface normal (i.e., the
robot is not tipping over) [45]. The ZMP will be further discussed in the Section 2-2 where
it will be mentioned as one of the most common stability analysis criteria for semi-dynamic
locomotion (i.e., it allows CoM accelerations but no flight phases).

Equation 2-22 constrains the contact force to be always aligned along the prismatic joint of
the pendulum and, for this reason, the ZMP always corresponds to the contact point of the
linear pendulum with the ground. The horizontal contact forces fxy acting in the LIP can
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thus be seen as a repulsive spring having a stiffness equal to mω2 (where m is the value of
the lumped mass in c):

fxy = mω2(cxy − z) (2-23)

As a side consideration, a friction coefficient constraint in the LIP model would directly result
in a limit on the pendulum angle (pitch and roll) as in Fig. 2-7a.
In the more general case in which a non null inertia (a flywheel) is included in the LIP model,
then a force redundancy arises (the contact force can be controlled by both the prismatic joint
and the flywheel torque) and, therefore, the contact force might not be aligned anymore with
the pendulum (see Fig. 2-7b). If the model includes a foot, then the ZMP can be located in
any point within the contact surface. The model can be equivalently be modeled as a LIP
with varying pivot point coincident to the ZMP position and passive ankle joint or as a LIP
with fixed pivot point and actuated ankle joint (adding in this case a further force redundancy
to the model) as in Fig. 2-7c. As a last possibility we also mention the possibility of modeling
the linear inverted pendulum with a foot and no flywheel: in this case the template is usually
known under the name of table-cart model.

The Single Rigid Body Dynamics represents a further simplification of the centroidal dynamics
explained in Section 2-1-2 consisting in assuming the centroidal inertia to be constant and
independent from the robot configuration. This assumption becomes more accurate for legged
robots with heavy trunk and lightweight limbs; in this case the fixed inertia matrix can be
approximated to be equivalent to the trunk’s inertial matrix. This works especially well
for quadruped robots, e.g., see Fig. 2-8, whose actuators are often designed to fit in the
robots trunk thus obtaining small legs’ inertia [46]. In the case of humanoid robots the
variations of the centroidal inertia matrix can be larger due to heavier legs, but these can
still be approximated to a predefined average value (e.g., value corresponding to the default
configuration).
Unlike the centroidal dynamics, the single rigid body dynamics does not capture dynamic
phenomena connected to the motion of the swing legs and arms such as the upper limbs’
oscillation to reduce trunk’s motion and stabilize the walking or the trunk’s rocking motion
during a jump due to the re-orientation of the legs.

2-1-3 Data-Driven Approaches

Thanks to the wide diffusion of the, so called, Internet of Things (which makes available
large amounts of any sort of data, or Big Data) and the decreasing cost of parallel computing
units (e.g., GPUs) in the past decade, we witnessed a burst of applications where statistical
methods are employed to extrapolate decisions and control policies that cannot be taken with
any other tool.
Consequently, also in the field of legged locomotion, a constantly growing part of the research
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(a) MIT Cheetah 3, 2018 (b) ANYmal, 2016 (c) Spotmini, 2018 (d) HyQ2Max, 2016

Figure 2-8: Quadruped robots examples:

(a) Cheetah 3 developed by the Biomimetic Robotics Lab. at MIT, 2018 [47];

(b) ANYmal developed by ANYbotics, 2016 [48];

(c) Spot Mini developed by Boston Dynamics, 2018 [33];

(d) HyQ2Max developed by DLS lab. (IIT) [49].

community is focusing on data-driven approaches such as Machine Learning (ML) and Rein-
forcement Learning (RL) for writing algorithms which are capable of teaching a robot how
to walk, jump and run. Such algorithms promise to overcome most of the limitations given
by heuristics (Section 2-1-1) and model-based approaches (Secton 2-1-2).

Impressive results in simulation have been achieved on this track, starting from the recently
published papers of DeepMind [50] and Abbeel et al. [51]. Such methods might either be
completely unsupervised, meaning that the algorithm has to first explore the policy space
by trial and error, or be partially supervised, in which case the algorithm is trained with
initial success examples. In the supervised learning setting, the algorithm might be given
the available sensor data (joint trajectories, IMU accelerations, joint torque trajectories, etc.)
regarding past experiments of a given robot performing a specified task. In the unsupervised
setting, instead, the algorithm is initially not given any clue about how to reach the final
target and this can only be achieved by the, so called, trial and error.
Whether supervised or not, the main challenge of these strategies consists in learning policies
that are capable of generalizing the successful samples to a diverse range of hardware models,
environments and disturbances.

When generality is not obtained then the learning algorithms may lead to brittle policies
that fail when executed on scenarios that differ from the one of the training data. This is
a major drawback especially when we intend to execute the learned policies on real robotic
platforms where several unmodeled dynamics may affect the execution of the task and various
unexpected events may occur.

Under such consideration there exist a number of intermediate strategies that try to improve
the locomotion behavior (or secondary behaviors) using machine learning approaches starting
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from the optimal solution of, often more reliable, model-driven trajectory optimization strate-
gies. This finds a more straightforward applicability to the hardware compared to learning
the whole locomotion task at once. Examples of that can be found for example in Villarreal
et al. [52] where, for predefined base trajectories and feet sequences of a quadruped robot,
a self-supervised Convolutional Neural Network (CNN) is trained from heuristics to learn
the locations on the terrains where the robot should place its feet, considering the terrain
morphology, slip conditions and the risk of possible shin-collisions with the terrain.

Similar approaches that merge model-based optimization and machine learning are all those
optimization problems whose constraints are obtained as a result of an offline data-driven
approach. Such learned constraints are typically low-dimensional proxy constraints of high
dimensional feasibility constraints such as the joint kinematic limits, the self-collisions and
the possible collisions with a complex geometry environment [53, 54, 55].

2-2 Stability and Feasibility Analysis

The dynamic modeling strategies explained in Section 2-1 must be coupled with an appro-
priate stability criterion for the generation of legged locomotion. This Section presents the
main stability criteria employed in the robotics research community, trying to discuss the
individual advantages and disadvantages of each one of them4.

2-2-1 The Support Polygon versus the Support Region

The support polygon criterion has been the first to be applied in robotics and it is still
used today thanks to its innate simplicity. It still finds application today (see Fig. 2-9) in
safety critical scenarios where stability robustness is more relevant than locomotion speed
or whenever high inertial accelerations might cause the robot to reach their feasibility limits
(e.g., joint torques and/or speed limits). The stability criterion related to the support polygon
states that the projection of the CoM cxy ∈ R2 on a plane perpendicular to gravity has to
be within the convex hull of the robot’s feet for the system to balance and to be statically
stable.

The stability criterion can be stated as:

S(pi,xy)cxy ≤ t(pi,xy) (2-24)

where S(pi,xy) ∈ Rne×2 and t(pi,xy) ∈ Rne represent the set of linear inequalities that delimit
the area of the support polygon (where ne is the number of edges of the convex-hull) given

4The term stability is here intended as in the sense defined by Pang et al. [56] and it should not be confused
with the (a-priori unrelated) notion of Lyapunov stability.
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by the projections pi,xy ∈ R2 of the nc contact points on the (x, y) plane:

pi,xy = P · pi i = 1, . . . nc (2-25)

The condition in Eq. 2-24 can be expressed in terms of the support polygon vertices (i.e., the
footholds):

cxy ∈ ConvHull(pi,xy) (2-26)

Whenever the contact points do not belong to the same horizontal plane, the criterion in Eq.
2-24 is no longer defined. There exist, however, many works that have approximated this
criterion to degenerate cases such as the case with non-horizontal coplanar contacts or the
condition in which the surface normals at the contact points are all parallel but their locations
are not coplanar, in which case the convex-hull becomes a 3D volume.

In their seminal work, Bretl et al. [57] demonstrated that, even if the feet belong to the same
horizontal plane, the orientation of the surface normals at the contact locations significantly
influences the shape of the areas where the robot can place its CoM to be statically stable.
Such areas were efficiently obtained by means of an Iterative Projection (IP) algorithm [58],
a cutting-plane recursive procedure which will be described in detail in Section 5-2. The first
obtained result is the fact that the support area is, in general, not a polygon: it is instead a 2D
convex region belonging to the (x, y) plane (orthogonal direction to gravity) and, therefore,
this can only be approximated by a linear set of inequalities (a 2D polygon). The second result
is the fact that, depending on the normals orientation, the shape of the support region, where
static stability is ensured, can be considerably different from the support polygon, i.e., the
convex hull of the contact locations (sometimes they even being two completely disjunct sets).
In the general case, the support region is in fact not a polygon at all, although it is usually
approximated as a 2D linear set (i.e., a polygon) with a number of edges dependent on the
desired approximation accuracy. The support region corresponds to the support polygon
(i.e., the convex hull of the contact points) only when all the contacts belong to the same
horizontal surface. Their difference becomes more and more apparent with the increase of
complexity of the terrain geometry, making the support region a much more suitable criterion
for static rough terrain navigation compared to the support polygon.
The static locomotion assumption stems from the consideration of gravity as the only external
force acting on the robot at all time during the computation of S(pi,xy) and t(pi,xy).

2-2-2 The Zero Moment Point (ZMP) and the Center of Pressure (CoP)

The CoM projection, explained above, has been replaced by a more dynamic stability criterion
that has its focus on another two-dimensional ground reference point, named Zero Moment
Point (ZMP) z = (zx, zy) ∈ R2. As anticipated above, the ZMP is defined as the point on the
flat ground where the moment produced by the inertial and gravitational forces is parallel to
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(a) Lauron III (b) Titan XI. (c) Robosimian

Figure 2-9: Example of three robots performing statically stable locomotion:

(a) Lauron series robots by the Forschungszentrum Informatik Karlsruhe (FZI), 2014 [59];

(b) Titan series robots developed at the Tokyo Institute of Technology, 2004 [60];

(c) Robosimian developed by NASA, 2016 [61].

the surface normal (i.e., the robot is not tipping over) [45]. It is a more dynamic criterion than
the CoM projection in that it allows non-null inertial accelerations. It cannot be considered,
however, a fully dynamic stability criterion since it is undefined in the case of flight phases.
The ZMP can be obtained by re-arranging the Newton-Euler equations and it accounts for
all the gravitational and inertial forces and torques acting on the CoM of the system [62]:

zx = cx −
c̈x

c̈z + g
cz −

k̇y
m(c̈z + g)

zy = cy −
c̈y

c̈z + g
cz −

k̇x
m(c̈z + g)

(2-27)

where k̇x and k̇y are the x, y components of the angular momentum rate k̇.

The ZMP stability criterion has been initially proposed by Vukobratović et al. [63, 64] in 1968
and has been further developed in multiple following works. It states that dynamic stability
is achieved if the ZMP (e.g., intersection of the ZMP line with the plane of support polygon)
is inside the support polygon/region.

Since dynamic balance is achieved when the contact forces directly oppose the gravitational
and inertial forces, maintaining the ZMP within the contact support polygon ensures that a
contact force can exist that is able to achieve this equilibrium, thus controlling the motion.
When this point goes out of the polygon it is not longer possible to achieve an equilibrium of
the moments and the robot starts to tip over around an edge ot the support polygon.

One key aspect, from this point of view, is the fact that the ZMP can be considered as a global
stability criterion only when all the contact points are coplanar. In all the other cases the
ZMP is instead a local stability criterion meaning that it can assess the stability of the specific
contact surface between the robot and the terrain (e.g., one local ZMP for each individual foot
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surface). The local ZMP takes also usually the name of Center of Pressure (CoP) (defined as
the point of application of the ground reaction forces). The global extension, able to assess
the overall stability of the full system having multiple contact points with the environment,
is only defined on a flat ground, where all the feet are therefore coplanar.
The ZMP stability condition assumes the support region to correspond to the convex hull S
of all the feet in contact with the ground and it states that, if the global ZMP z ∈ R2 belongs
to it, the global stability of the robot is guaranteed:

S(pi,xy)z ≤ t(pi,xy) (2-28)

or, equivalently:
z ∈ ConvHull(pi,xy) (2-29)

On the other hand, if all the contact surfaces between robot and environment are not coplanar,
the convex hull of the contact areas is not defined and the global ZMP does not represent
a possible stability predictor. In this case, checking the stability of every single local ZMP
(i.e., making sure that every stance foot and hand has a stable CoP) ensures that each foot
does not rotate but does not say anything about the global stability of the whole robot [31, 65].
This approach is most commonly used for humanoid robots considering that quadrupeds are
usually approximated to have contact points rather than contact surfaces and, in that case,
the local ZMPs (i.e., CoPs) simply correspond to the contact points.

Differences between the CoP and the ZMP typically arise in the case of a foot rolling around
its edge; in this case the CoP belongs to the edge around which the foot is rotating, the
ZMP, however, is not defined because the angular momentum around the edge is non zero
[64, 66]. In such case an extended definition of the ZMP, called Fictitious Zero Moment
Point (FZMP) (which exists outside of the support region) can be used; alternatively the
Foot Rotation Indicator (FRI) can similarly be employed for describing the stability of a
legged robot rotating around one edge of its feet. Both the CoP and the ZMP assume that a
sufficient friction acts between foot and ground.

Extensions of the ZMP to non flat environments and to multi-contact scenarios have been
proposed [67, 68, 69] and will be the main topic of the following Section.

2-2-3 The Contact Wrench Cone (CWC)

The first analysis of the dynamic stability on non-coplanar contacts that comprises both
linear and angular terms was performed by Saida et al. [67]. In their work, the stability
problem corresponded to the challenge of finding a feasible set of contact wrenches to an
arbitrary distribution of contact points. This lead to the proposal of the Feasible Solution
of Wrench (FSW), a virtual point that corresponds to the ZMP in the case of pure external
forces (no torques) and coplanar contacts. This work has been later further developed in
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[68] into the currently used formulation that states that the aggregated wrench (also called
Contact Wrench Sum (CWS) or Gravito-Inertial Wrench (GIW)) wGI ∈ R6:

wGI =
[

l̇
k̇O

]
︸ ︷︷ ︸

ḣ

−
[
mg

c× g

]
︸ ︷︷ ︸

wG

(2-30)

acting on the robot must remain inside the convex polyhedral cone resulting from the sum
of the individual friction cones of each contact point. In Eq. 2-30, the term ḣ represents the
rate of linear and angular momentum expressed in the inertial frame O whilst wG represents
the momentum change contributed by gravity. The new stability criterion can thus be stated
as an Ordinary Differential Inclusion (ODI):

wGI ∈ CWC (2-31)

The CWC is defined as the Minkowski sum of the friction cones of all the contact points:

CWC = ConvexCone

([
eki

pi × eki

])
with: k = 1, . . . ne, i = 1, . . . nc (2-32)

where nc is the number of contact forces and ne is the number of edges e used to linearize
the friction cones (e.g., see Fig. 2-10). Usually ne = 4, however it is possible to find works
in the literature where n = 3 or ne = 8. In the case of end-effectors with a limited contact
surface the contact can be modeled as a point-contact (e.g., quadruped robots with ball feet).
In the case of generic end-effectors with a non-negligible contact surface such as the feet of a
humanoid robot, however, each contact can be either modeled as a set of pure contact forces
or as a unique contact wrench (see Fig. 2-11). For a short discussion on the equivalence of
Minkowski sums and the convex hull operator for unbounded polyhedral cones please refer to
Appendix B-2.

In the above mentioned works, for the first time, the aggregated wrench wGI acting on the
robot is dealt as six-dimensional reference point in opposition to all the previously used two-
dimensional ground reference points explained in the above Sections. Therefore, if a centroidal
model is used to compute this wrench, this criterion allows us to include both the centroidal
linear and angular dynamics in the stability evaluation. This was also the first time that the
friction coefficient of each individual contact point can be considered for the evaluation of the
global stability of the system.

Dai et al. [70, 71] have further exploited the criterion proposed in [68] to optimize robust
centroidal trajectories (both linear and angular accelerations) on complex terrains where the
venerable ZMP criterion is known to fail. Further works in this direction included the quasi-
analytical computation of the CWC constraints only for some specific contacts configurations
and surface normal orientations [72].
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As previously anticipated, the CWC can be considered to be a generalization of the support
region constraint for non-coplanar contact sets with limited friction coefficients. Interestingly
enough, in case of coplanar contacts and sufficient friction, the six-dimensional CWC can be
sliced by the four planes corresponding to c̈x = 0, c̈y = 0, c̈z = −g and ω̈z = 0 thus resulting in
the same 2D linear convex set (i.e., the support region) that can be found using the iterative
projection algorithm as explained in [57].

Figure 2-10: A single
point contact can be mod-
eled with a (pink) friction
cone or with a (red) lin-
earized cone (i.e., an in-
verted pyramid with an ar-
bitrary number of edges)

Despite the different final goal, these approaches share many similar-
ities with those strategies employed in robotic grasping, a research
field closely related to legged locomotion. In this field, in particular,
similar definitions are given, such as the Grasp Wrench Set (GWS),
in order to identify robust object grasps [73, 74]. In robotic ma-
nipulation the goal is usually to achieve force closure, namely the
condition in which the contacts between the robotic hand and the
object have such a configuration that allows to resist any arbitrary
external wrench. Under this condition grasp robustness is guaran-
teed because the robot cannot break the contact from any finger tip
without any external non-zero work [75, 76].
Even though the force closure condition is rarely achieved in the
problems related to motion planning of legged robots, common tools
can be exploited for the benefit of each individual research field.

In this wrench-based family of stability criteria, robustness can be treated in terms of minimal
distance between the aggregated wrench wGI and the facets of the CWC. This generalized
distance represents, therefore, the stability margin that must be kept constantly larger than
zero in order to ensure robust stability at any time [77]. In this case a six-dimensional ellipsoid
can be defined of radius r; the residual radius (i.e., the stability margin) will correspond to
the radius r of the largest ellipsoid Br centered in wGI and inscribed in the CWC.
The wGI , just as well as the previously discussed ground reference points, all depend on the

(a) Pressure distribution. (b) Friction cones of a foot.
(c) Wrench cone of a foot.

Figure 2-11: Different types of contact modeling. A surface contact can be modeled as (left) a
smooth pressure distribution normal and tangential to the surface, (middle) a set of pure friction
cones or (right) as a unique six-dimensional wrench cone applied on the local CoP z.
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instantaneous centroidal state and, as a consequence also the stability margin will contin-
uously change (even if the contacts do not change). A different approach can be found by
computing robust (usually convex) regions that are guaranteed to be safe for a predefined
level of disturbance. This technique has found application in different works such as [78]
where, for a predefined range of centroidal accelerations, a 3D robust region for the position
of the CoM is found. Conversely, in [79] a set of admissible CoM accelerations is found for
given disturbances in the centroidal position.

2-2-4 The Capture Point

Although many more ground reference points have mentioned over the decades, the most
relevant after the CoP is arguably the Instantaneous Capture Point (ICP) ξ ∈ R2. The ICP
turns upside down the balancing perspective by looking at a foot position on the ground that
ensures dynamic stability given the current CoM state, rather than seeking an appropriate
CoM target position to stabilize the system for the given support polygon/region (as in the
ZMP based approaches).
The ICP is only defined for the LIP model and thus holds similar approximations such as
fixed CoM height, flat coplanar contacts and contact force acting as a repulsive spring. The
ICP is then defined as the point on the ground where the robot needs to place its foot in
order to come to a complete stop given its instantaneous linear velocity [80, 81]:

ξ = cxy + 1
ω

ċxy (2-33)

This can be re-written in the following explicit form:

ċxy = ω(ξ − cxy) (2-34)

If we differentiate Eq. 2-34 we obtain:

c̈xy = ω(ξ̇ − ċxy) (2-35)

and then plug Eq. 2-22 in Eq. 2-35 we obtain:

z = cxy −
1
ω

(ξ̇ − ċxy) = cxy + 1
ω

ċxy︸ ︷︷ ︸
ξ

− 1
ω
ξ̇ (2-36)

In explicit form this corresponds to the following Ordinary Differential Equation (ODE) that
describes the ICP dynamics:

ξ̇ = ω(ξ − z) (2-37)

The ODEs in Eq. 2-34 and Eq. 2-37 can be seen together as the decomposition of the second
order linear dynamics in Eq. 2-22 in two first order linear systems. The former (Eq. 2-34)
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represents the stable part of the dynamics (e.g., pole having negative real part) showing that
the CoM projection converges to the ICP for an infinite horizon. Similarly, the latter (Eq.
2-37) represents the unstable part of the system showing that the ICP will diverge from the
ZMP over time. For this reason, ICP has been equivalently called eXtrapolated Center of
Mass (XCoM) [82] or Divergent Component of Motion (DCM) [83]. If the ICP belongs to the
support region:

ξ ∈ ConvHull(pi) (2-38)

or, equivalently:
S(pi)ξ ≤ t(pi) (2-39)

then it is possible to set ξ = z and cxy will converge to ξ thus bringing the robot to a complete
stop. Based on the ICP, a whole new research line, called Capturability Analysis, is born that
looks at the number of steps needed to come to a complete stop, given the limit capabilities
of the robot (e.g., finite-sized foot or maximal instantaneous angular momentum rates) [81].
In the capturability framework, a state of the reduced model is said to be N-steps capturable
if there exists a set of, at least, N steps that will allow to system to come to a stop. The
idea is thus that each step will contribute to reduce the kinetic energy of the system until it
converges to zero.
Capturability analysis can be seen as a branch of the, more general, viability analysis that
attempts to identify all those states that do not lead to a fall of the robot [62].
A promising approach for the generation of bipedal locomotion, based on the LIP model and
its unstable dynamics (i.e., the ICP), consists in making sure that the reference trajectories
satisfy the, so called, boundedness constraint [84, 85]. The boundedness constraint relates the
control input z (i.e., CoP) to the initial conditions of the LIP model:

ξ∗(t0, z) = cxy(t0) + 1
ω

ċxy(t0)︸ ︷︷ ︸
ξ(t0)

(2-40)

where:
ξ∗(t0, z) = ω

∫ ∞
t0

e−ω(τ−t0)z(τ)dτ. (2-41)

Eq. 2-40 can be either used to define a stabilizing control input z(t) based on the system’s
initial conditions cxy, ċxy or to find a set of initial conditions that guarantee the system to
converge to a bounded steady state for a predefined control input.

Since they are defined for a linear inverted pendulum model, all the above ground reference
points are only defined on a flat ground and completely neglect the vertical dynamics. As
a consequence, their applicability to complex geometry environments and to highly dynamic
motion is limited. An extension of the ICP to 3D arbitrary terrains is an exciting perspective
that has already been investigated [86, 87, 88]. The strategy proposed in [86], for example,
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based on the definition of the Enhanced Centroidal Moment Pivot (ECMP) and Virtual
Repellent Point (VRP), however, focuses on the Newton equation for the centroid:

l̇ = mc̈ = mg +
nc∑
i=1

fi (2-42)

However, [86] assumes the centroid as a point mass thus discarding the angular momentum
change given by the Euler equation:

k̇ = Iω̇ =
nc∑
i=1

(pi − c)× fi (2-43)

The cross product in Eq. 2-43 represents a bilinear constraint that is indeed hard to embed
inside real-time, or online, motion planners. Even in the simplified case where the contacts
positions pi are fixed, the multiplication between CoM position c and external forces fi
remains bilinear [89].
The branch of stability analysis approaches that are compatible with locomotion tasks that
require large angular momentum variations have been explained in the previous Section 2-2-3.
The next Section will instead deal with a more generic method for the analysis of viability
that employs tools of nonlinear control theory such as fixed points and limit cycles.

2-2-5 Stable Limit Cycles

We will now go through a different approach for the stability analysis of legged robots that
considerably differs from the strategies explained so far mainly based on low dimensional
(2D or 6D) centroidal reference points. This approach lies its foundations in the concepts of
attractors (i.e., a set of numerical values to which the system tends to evolve for a large set
of initial conditions); in particular, two types of attractors are considered: fixed points and
limit cycles. Fixed points (or equilibrium points) are recurrent states in the execution of a
recursive, cyclic, task; in the locomotion domain this may correspond to a safe posture where
the robot can safely stand still [62]. Limit cycles represent an extension of fixed points and
can be defined as recurrent/periodic trajectories that repeat at a constant time interval T
[90].
The periodic behavior can be found, for example, in many hybrid systems where discrete
events (such as saturation limits) can force the states to stay within a limited portion of the
state space [91].

Let us consider an arbitrary nonlinear multi-variable system a(·) and a state x(t) ∈ Rd:

ẋ(t) = a(t,x(t)) (2-44)

In the locomotion setting, the state x(t) may represent, depending on the application, the set
of joint configurations q(t) ∈ Rn+6, the joint torques τ (t) ∈ Rn, the contact forces/wrenches
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f(t) ∈ Rm, the robot’s CoM task-space position c(t) ∈ R3 or orientation R(t) ∈ SO(3). The
function a(·) may, for example, describe the differential evolution of the state with an impact
with the environment.

If the system is cyclic then the function a(t,x) takes on the same values periodically with a
constant time period T . If we assume that T is known we can then write:

a(t+ T,x(t)) = a(t,x(t)), ∀t ∈ R (2-45)

or, equivalently:
x(t+ T ) = x(t) ∀t ∈ R (2-46)

Any solution φ = {x(t)|t ∈ [0,∞)]} of the differential Eq. 2-44 that satisfies this condition
is named T-periodic solutions/orbit (i.e., a limit cycle). For a locomotion task, a periodic
solution φmay be written for examples as a trajectory {〈q(t), τ (t), f(t), c(t),R(t)〉|t ∈ [0,∞)]}
that satisfies the following conditions:

q(t+ T ) = q(t);

τ (t+ T ) = τ (t);

f(t+ T ) = f(t); ∀t ∈ R

c(t+ T ) = c(t);

R(t+ T ) = R(t);

(2-47)

Any point x̄ at a specific time instant t∗ of the periodic trajectory is a fixed point. If we
then consider the phase plot of the same cyclic system, this fixed point x̄ also coincides to
the intersection between the periodic trajectory and a lower dimensional plane (of dimension
d), called Poincaré section or return section S, orthogonal to the periodic trajectory in t∗.
It is then possible to define the function P : S → S, called Poincaré map, that maps a state
x(t∗) on the Poincaré section in another element x(t∗ + T ) of the same section:

x(t∗ + T ) = P(x(t∗)) (2-48)

Thanks to the property stated in Eq. 2-46, fixed points can be seen as elements of the state
space that are mapped into themselves by the return map P:

x̄ = P(x̄) (2-49)

Poincaré maps P can be viewed as discrete dynamical systems. The stability of the fixed
points associated to the map P is closely related to the stability of the original considered
system a(t,x). For this reason Poincaré maps represent a useful tool to analyze the stability
of chaotic and hybrid systems that can be hardly performed in other ways.

Although not being limited to any specific system (the same stability principles hold for both
reduced and for full systems, continuous or hybrid systems), fixed points and limit cycles
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analysis are usually performed numerically and thus suffer from the same numerical limita-
tions of other optimization-based planning strategies (e.g., number of variables exponentially
increasing with the number of discretization intervals). For this reason, they are usually
performed offline and are typically applied to reduced models such as the dynamics of the
centroid (especially if designed for online planning applications).

As mentioned above, the computation of the Poincaré maps is usually done numerically:
analytic stability assessment of Poincaré maps can only be performed for a restricted family
of systems that show time-reversal symmetries [92]. In all the other cases, a linearized Poincaré
map can be obtained by computing trajectory sensitivites [93, 42, 94].
Consider, for example, a state x0 ∈ Rd and a discrete map P . The state x1 = P (x0) is a
point on the return section (obtained, for example, by forward simulation from the initial
condition x0). If the fixed point x̄ ∈ Rd is asymptotically stable and x0 belongs to its domain
of attraction, then:

lim
k→∞

P k(x0) = x̄ (2-50)

and, by definition of fixed point:
P k(x̄) = x̄ (2-51)

First of all, we define an infinitesimally small scalar disturbance ε and a perturbation vector
ej ∈ Rd such that:

ej =
{

ε if j = i

0 otherwise
for i = 0, . . . d (2-52)

All the elements of the ej vector are null apart from the j − th element.
The linearized Poincaré map DPk(x̄) ∈ Rd×d can be obtained by performing the three fol-
lowing steps:

1. perturb the considered fixed point x̄k with the perturbation ε; For this purpose we
define the vector x̃kj such that:

x̃kj = x̄k + ej (2-53)

2. simulate numerically the evolution of the system up to the following intersection with
the Poincaré section:

x̃k+1
j = P(x̃kj ) (2-54)

The location of the Poincaré section is arbitrary, there are, however, practical guidelines
to chose where to place it depending on the considered task. In the case of a periodic
running gait, for example, the Poincaré section can be conveniently located at the apex
of the flight phase; this allows to easily detect a new point on the return map by simply
looking for the state on the swing phase that has a null vertical velocity (see Section
3-2-4).
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3. compare the deviation from the previous state relative to the intensity of the perturba-
tion ε:

DPk(x̄) = 1
ε

[
x̃k+1
i,j − x̃ki,j

]
= 1
ε


x̃k+1

0,0 − x̃k0,0 . . . x̃k+1
0,d − x̃k0,d

... . . . ...
x̃k+1
d,0 − x̃kd,0 . . . x̃k+1

d,d − x̃kd,d

 (2-55)

DPk(x̄) gives an estimate of the sensitivity of each individual dimension j from a
disturbance in the dimension i.

Once the matrix DPk(x̄) is obtained, one can evaluate the limit cycle stability by looking
at the largest Eigenvalue λmax of DPk(x̄). If |λmax| < 1 then the map is stable and the
periodic solution is also stable (attractor); if |λmax| > 1 then the periodic solution is unstable
(repulsor); |λmax| = 1 then the periodic solution is marginally stable (saddle) [91].

Limit cycles in legged locomotion have found a wide range of applications [95], especially for
the generation of highly dynamic motions where all the stability criteria mentioned so far
would fail. They can also be applied to jumping and running gaits (with aerial phases) were
the robot switches between ballistic phases and stance phases characterized by high impact
forces with the ground. This criterion can be used for humanoid running tasks on a flat
ground where we assume the robot’s CoM will periodically attain the same values of position,
velocity and acceleration at the apex of every other flight phase. The same can be applied to
a number of quadrupedal gaits such as, for example, pace, bounding, canter and gallop.
Pioneer in this field was T. McGeer [96] who used limit cycles analysis to prove the existence
and the feasibility of passive dynamic walking down small inclines.

The robustness of limit cycles can be measured in terms of their sensitivity to changes of the
systems’s parameters such as terrain height variations or external disturbances.

Doctor of Philosophy Thesis Romeo Orsolino



36 Related Works

Romeo Orsolino Doctor of Philosophy Thesis



Chapter 3

Bounding Gait

3-1 Introduction

Highly dynamic robot mobility has recently gained a lot of interest among robotics researchers.
In this Chapter we focus on a specific type of quadrupedal gait, the bounding gait, which
becomes useful whenever the robot should cover bigger distances in a shorter time than with a
trot. The bounding gait is a dynamical quadrupedal gait characterized by the synchronization
of the pair of front and hind legs that lift-off from the ground and touch-down in unison. It is
a typical gait of fast runners such as horses, greyhounds and cheetahs which usually employ
this kind of run to reach comparable speeds to the ones that can be achieved with the gallop.
Most of the robots that were able to perform a bounding gait up today were presenting
mass symmetry [97, 98, 99, 10]. However, in nature most of quadrupeds typically show an
asymmetrical body mass distribution. In particular, bio-mechanics studies confirmed the
asymmetry of quadruped animals from different sides:

• Static measurements on quadruped mammals, mainly dogs and horses, have shown that
their Center of Mass (CoM) is always shifted towards the front of the body resulting
in an asymmetric structure. A consequence of this is that front limbs bear around the
60% of the animal’s weight in steady state locomotion [100], [101].
On the same line, quadruped robots, even if they have a symmetric skeleton, can be
equipped with exteroceptive sensors (e.g., different sets of cameras) which are usually
positioned in the front to acquire information of the environment, thus shifting the CoM
in a similar manner.

• Even in the presence of a perfectly symmetric quadruped, the kinematic limits and the
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manipulability properties of front and hind limbs do not allow them to push or pull the
trunk with equal ease in any direction [102].

At this respect, the applicability of traditional simplified models used for locomotion (e.g.
to generate quadrupedal gaits), such as the Spring Loaded Inverted Pendulum (SLIP) model,
reach their limits, due to their symmetric structure, compared to the asymmetric nature of the
quadrupedal case, even if the motion is restricted to the sagittal plane (2D). This limitation
becomes more apparent when the gaits that we want to generate are highly dynamical and
include aerial phases such as bounding, galloping or jumping on an obstacle. In this case the
dynamics of the orientation of the trunk is highly influenced by the asymmetric distributions
of the mass and can not be ignored.

A thorough analysis of an Asymmetric Spring Loaded Invered Pendulum (ASLIP) model was
introduced by [103] and a further study on the consequences of such model asymmetry was
performed by [104]. At the best of our knowledge, other studies, dealing with highly dynamical
movements and asymmetric simplified models, can be found in [105, 106, 92].

Many implementations in last decades have already shown impressive dynamic capabilities in
performing hops, jumps and dynamic gaits such as Raibert’s hoppers and quadrupeds [97]. In
more recent years Big Dog by Boston Dynamics has shown the best performances in terms of
robustness and agility, however, its implementation details are yet confidential. Specifically
about bounding gait the MIT Cheetah has achieved impressive results managing to replan
online and jump obstacles while bounding [10, 107, 108].
Despite the excellent existing hardware results in the state of the art, still a lot has to be
understood before quadruped robots can imitate quadruped animals and achieve the same
agile movements as they do. I believe that extending the range of dynamic motion capabilities
of quadruped robots could improve their chances to applied in real world applications such
as rescue missions.

In this Chapter we try to perform a step in this direction by understanding how a typically
fast and dynamic gait such as bounding can be employed also to perform omni-directional
movements which might be useful to quickly reach a desired target in a moderately rough and
narrow environment (e.g., by passing trough a door without decelerating or by performing
agile turning maneuvers with small turning angles). At the same time, staying within the joint
torque limits is an important requirement that becomes even more stringent when addressing
dynamic motions in moderately rough terrains. It is known indeed that horses during gallop
are already very close to peak forces on tendon and bones and having no margin for ground
disturbances could result in injury or damage [109]. Similarly, in the case of quadruped robots
hitting the torque limits could result in severe loss of stability.

Contribution:
The main contribution of this Section is a framework that implements omni-directional bound-
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ing gait on a 80kg torque-controlled quadruped robot with an asymmetric mass distribution.
We propose the usage of two decoupled criteria to ensure the robot’s global stability: in par-
ticular we employ the theory of limit cycles and linearized Poincaré maps (as explained in
Section 2-2-5) to stabilize the robot’s sagittal dynamics while we use the concept of Center of
Pressure (CoP) (Section 2-2-2) to prevent the robot from falling during turning maneuvers.
In addition, we enhanced the gait’s terrain adaptation capabilities, improving the tracking
of the desired ground reaction forces (obtained from offline optimization), and addressed the
problem of limiting peak torques. Finally we demonstrated the proficiency of the framework
showing preliminary experiments on the hardware platform.

Figure 3-1: HyQ, IIT’s quadruped robot [110]

Outline:
In Section 3-2 we illustrate a lower dimen-
sional model of the robot which considers the
interaction with the ground. This model will
be then employed in an offline trajectory op-
timization problem to devise a baseline sta-
ble bounding gait in place (i.e., null linear
and heading velocity of the robot’s Center of
Mass (CoM)). In Section 3-3 we describe the
necessary steps that must be undertaken to
implement the optimal solution on the full model of the quadruped robot. In Section 3-4 we
present simulation results together with preliminary experiments carried out on HyQ, IIT’s
hydraulic quadruped robot [110] (Fig. 3-1). In Section 3-5 the final discussion of this Chapter
is performed where we draft future development directions.

3-2 Optimization

In this Section I will show the required steps to generate a self-stable bounding gait that is
flexible enough to react to unexpected external disturbances, terrain height variations or to
new commands of an external operator. Therefore the optimization problem that we designed
receives the desired horizontal linear speed of the robot and computes the feet trajectories
and feedforward torques necessary to realize that motion.
In the subsections 3-2-1 and 3-2-2 we now explain the nomenclature and model that is later
used in subsection 3-2-4 to find an optimal solution for the bounding gait.
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Figure 3-2: Snapshot of the simplified planar model of interaction between the trunk of a
quadruped robot in the 2D sagittal plane and the ground. The red dot represents the geometric
center of the trunk while the blue dots are the front and hind hips.

3-2-1 An Asymmetric Dynamic Model

Given the above considerations regarding the asymmetrical nature of quadrupeds, we employ
the planar simplified dynamic model portrayed in Fig. 3-2. We indicate with c = [x, z]T ∈ R2

the trunk’s CoM position and with ff = [ffx, ffz]T ∈ R2 and fh = [fhx, fhz]T ∈ R2 the Ground
Reaction Forces (GRFs) of front and hind legs respectively. The positions of the front and
hind feet are represented with pf = [pfx, pfz]T ∈ R2 and ph = [phx, pfh]T ∈ R2. The lever
arms of the contact forces with respect to the CoM of the trunk lf and lh, are scalars whose
amplitude is, in general, different from the quantity L/2 (L is the distance between the hind
and front hips) and is dependent on the foot contact points pf ,ph and the line of action of the
Ground Reaction Forces (GRFs), defined by the angles φf and φh. The resulting equations
of motion are:

mẍ = ffx + fhx

mz̈ = −mg + ffz + fhz

Iθ̈ = pfxffz − pfzffx

(3-1)

where the scalar I represents the inertia of the robots trunk computed as mr2, m is the mass
and r is the radius of gyration with respect to the CoM [111].
The generalized coordinates x = [x, z, θ]T fully describe the trunk on the 2D sagittal plane
while the forces ff and fh (where f and h stand for front and hind) are the interaction forces
from the ground acting on the trunk and will be the topic of the next subsection.

3-2-2 Impulse Generation

The accuracy of the model should not influence the performances of the optimization and
should be still fast enough to be possibly computed online. For this reason, besides adopting
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3-2 Optimization 41

a low dimensional planar simplified dynamic model, we also employ a simplified model of
interaction with the environment. Namely we impose the both the normal and tangential
components of the GRFs ff and fh to take on an impulse-like shape as in Fig. 3-3, defined by
a 4th order Bézier curves [10]. These curves fit well with the experimental data of the GRFs
created by humanoids and quadrupeds [112]. The integral of the overall GRFs over the stance
time Tst is the impulse expressed by Jf ∈ R2 and Jh ∈ R2:

Jf =
∫ Tst

0
ff (t)dt and Jh =

∫ Tst

0
fh(t)dt (3-2)

The impulsive nature of the GRFs that we assume here implies that this interaction model
can not be used to describe the robots behavior in slow or static conditions, e.g., when the
robot changes his body pose without lifting the legs from the ground. In such cases the
Bézier curves might still be employed for modeling the profile of the contact forces, however,
the curve coefficients should be changed in such a way to better fit a quasi-constant value
(e.g., step signal).
The interaction model defined in this way can be fully defined by a limited set of parameters
which will form the optimization variables of subsection 3-2-4.

• amplitudes on the force profiles: ahx, ahz, afx, afz. In this way the values of the contact
forces ff and fh can be obtained by multiplication of the impulse amplitudes by the unit
impulses if ∈ R2 and ih ∈ R2 of duration Tst:

f = diag(afx, afz, ahx, ahz)i (3-3)

where: f = [fTf , fTh ]T ∈ R4 , i = [iTf , iTh ]T ∈ R4 and:

∫ Tst

0
if (t)dt = 1,

∫ Tst

0
ih(t)dt = 1. (3-4)

• the feet positions: pf ,ph

Table 3-1: List of main symbols used in this Chapter
s = [xT , ẋT ]T generalized coordinates vector ∈ IR6

y∗ fixed point
Jh, Jf impulse given during stance phase of each leg
fh, ff force profile during stance phase of each leg
φh, φf orientation of theGRFs on the plane
θ pitch angle
ϕ yaw angle
[afx, afz] force profile of the front limbs
[ahx, ahz] force profile of the hind limbs
pf , ph hind and front feet positions
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front limbs
hind limbs

stance phase

flight phase

Figure 3-3: Desired tangential (top) and vertical (bottom) GRFs of the front (blue) and hind
(red) legs for the generation of a bounding gait in place.

3-2-3 Selection of the Main Gait Parameters

Thanks to the simplified trunk model defined above and the interaction model we can set a
complete baseline bounding gait by defining the following independent parameters:

• stance time Tst;

• z coordinate at the apex of the aerial phase zapex;

• desired horizontal speed ẋ.

We assume here a value of zapex of 7 cm which corresponds to about the 10% of the legs
length of HyQ, but this value can be changed to increase the foot clearance from the ground
in presence, by instance, of obstacles.
Additional parameters dependent from the above defined variables are (see Fig. 3-3):

• swing time Tsw = 2
√

2zapex

g

• cycle time T = Tsw + Tst

• flight time Tfl = T−2Tst
2

3-2-4 Discovery of Periodic Limit Cycles

The decision variables of our optimization problem are the control inputs of the impulse
gains in Eq. 3-3, namely the amplitudes of the force profiles at each discretized kth instant:
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uk = [akhx, akhz, akfx, akfz] besides the initial conditions s0 = [xT0 , ẋT0 ]T . We decide the initial
state of the optimization to be on the apex of the ballistic phase in the middle of the flight
phase of duration Tfl; this implies a CoM apex height of z0 = zapex and a null initial speed
ż0 = 0. Since we are interested in obtaining a stable bounding in place we also set ẋ0 = 0; in
this way the only initial conditions left to be determined by the optimization are θ0 and θ̇0.
The goal is to minimize the cost function L(θ0, θ̇0, û) at each time step where:

û = [a0
hx, a

0
hz, a

0
fx, a

0
fz . . . a

N
hx, a

N
hz, a

N
fx, a

N
fz] (3-5)

The vector containing all the states at kth instant is ŝ:

ŝ = [x0, y0, θ0, ẋ0, ẏ0, θ̇0 . . . xN , yN , θN , ẋN , ẏN , θ̇N ] (3-6)

where N is the number of time samples used to discretize a whole cycle of the bounding gait
of duration T . For an integration step t = 0.001s and a cycle time T = 0.4s one obtains
N = T/t = 400 samples.
The optimization problem is thus defined as:

y∗ = min
θ0,θ̇0,u

L(θ0, θ̇0, û) =
N∑
k=1

(θ2
k + θ̇2

k + uTk uk) (3-7)

subject to the hard constraints:

• dynamic model: sk+1 = f(sk,uk) with: k = 1, 2 . . . N

• periodicity: s0 = sN

• GRFs limits: umin ≤ uk ≤ umax

The terms θ, θ̇ and û in the cost function L(θ0, θ̇0, û) were employed in order to reduce the
rocking motion to the minimum needed while concurrently limiting the impulses amplitude.
It is interesting to point out that the final values of the resulting impulses returned by the
solver respect the principle of conservation of linear momentum for both the vertical and
horizontal components, even if this principle is not explicitly enforced:

Jhz + Jfz = mgT (3-8)

Jhx = −Jfx (3-9)

We found a set of solutions corresponding to different values of the input parameter Tst in
the range between 50ms and 300ms and analyzed the stability of the different periodic limit
cycles obtained. Such limit cycles can be considered as a fixed point y∗ = {θ0, θ̇0, û} in a
Poincaré section. We choose the Poincaré section in coincidence of the apex of the ballistic
phase because, as mentioned in Section 2-2-5, this is a convenient choice for the set up of the
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44 Bounding Gait

optimization problem in that the initial conditions on the linear position and velocity of the
CoM c are known and the only unconstrained initial conditions are θ0 and θ̇0. In this way
the solution y∗ represents a fixed point on this map [93].
This analysis of the resulting phase plots (reported in Fig. 3-4) shows that all the eigenvalues
λi of the discrete linearized Poincaré map have a magnitude bigger than 1 (λi > 1) meaning
that the found periodic limit cycle are unstable in open-loop for all the analyzed duty factors
D (which is the ratio between the stance time Tst and the gait period T such that: D = Tst/T ).
The stabilization of these periodic limit cycles can be performed in two ways:

1. by state feedback;

2. by delaying/anticipating the force impulses.

The former method is inherently present in the joint-space active impedance controller already
implemented on acHyQ [113]. The latter option is, therefore, not further investigated in this
Chapter although it offers promising perspectives in terms of robustness with respect to the
torque limits: the online adaptive adjustment of the swing time duration in presence of, for
example, terrain height variations may stabilize the system without need of increased impulse
amplitudes during the stance phase.
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Figure 3-4: Plot of the various periodic limit cycles which the optimizer yields for a range of
stance times Tst from 50ms to 300ms.
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Figure 3-5: Block diagram showing the structure of the proposed controller.

3-3 Implementation

As outlined above in order to achieve a stable bounding in a real system the feedforward force
profile obtained in 3-2 is not sufficient and state feed-back is needed in order to make the
baseline limit cycles stable. It is then necessary to implement a number of other correction
mechanisms that generate in a heuristic manner all those references that are not specified by
the offline Poincaré analysis explained in the previous Section. These are elements are:

• State machine: it coordinates the switching between the legs’ phases;

• Feet swing trajectory generator;

• Haptic touchdown;

• Kinematic adjustment;

• Omni-directional motion controller;

• CoP-based lateral stabilization.

These different blocks that compose the overall control framework are explained in the fol-
lowing subsections. An overview of this structure is given in Fig. 3-5.
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46 Bounding Gait

3-3-1 State Machine

The state machine (see Fig. 3-5) is the time coordinator of the control framework which
ensures that the feedforward impulses computed by the optimizer are deployed in the correct
instant. The swing phase is here divided into two main subphases, the retraction and the
extension of duration Trt and Text such that Tsw = Text + Trt. Therefore on each cycle the
state machine sequentially goes through three phases:

1. Stance: the triggering of this phase is performed with different criteria for the front and
hind legs. In particular the stance of the front legs is set when the contact with the
ground occurs on both limbs on a haptic basis; the stance of the hind legs is instead
triggered when a time corresponding to T/2 has elapses. This partition highlights the
different roles of the front and hind legs: the front limbs take on their stabilizing role
against possible model uncertainties or external disturbances, by sensing the terrain,
allowing the robot to cross moderately rough environments.
The hind legs, instead, provide the propelling power necessary to achieve forward mo-
tion. The triggering condition for the stance of the hind legs, after a time T/2, ensures
on average that the desired timing of the bounding gait is achieved and ensures that
trunk reaches the desired pitch and vertical height before the pushing force is propelled.

2. Leg retraction: it starts after the time Tst has passed. During this phase the feedforward
torque is set to zero and the desired swing trajectory is achieved by PD control, in the
meanwhile the foot is raised from the ground level to the maximum retraction height zrt
(see Fig. 3-6). The quantity zrt is always fixed for every step, which allows to recover
from possible accumulated errors in the previous foot cycle.

3. Leg extension: similarly to the previous phase, the extension of the legs is set by the
time-scheduler when a period of Trt has elapsed from the lift-off instant (see Fig. 3-5)
and it finishes after a time of Text milliseconds in the case of the hind limbs, while for
the front limbs it can be extended till when the haptic touch down is triggered.

Each phase distinguishes itself, besides the controller and the triggering criterion, also for the
different feet trajectory generated.

3-3-2 Feet Trajectory Generation

Each phase of the state machine generates independently the feet trajectoryWp = [px, py, pz] ∈
R3 (in the world frame W) for the time interval of interest. From now on I will drop the pedex
W and all the feet positions will refer to the world frame unless differently specified and will
be indicated by the variable p. The values of the px, pz components are those specified in the
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offline optimization problem. This implies that, even in conditions of bounding in place with
no forward velocity, an oscillatory motion will also be present in the longitudinal direction of
robot (along the x axis) besides the oscillations on the vertical axis and on the pitch angle.
The py component for bounding in gait is instead corresponding to the value of Hydraulically
actuated Quadruped (HyQ)’s default configuration. The definition of the feet swing trajec-
tory is done employing a Bézier curve of 4th order. To ensure continuity and smoothness
in the transitions among the three phases we impose the initial position and initial velocity
of the foot of the following phase to be equal to the final position and final velocity of the
previous phase.

Liftoff Touchdown

Retraction

Stance

Extension

Figure 3-6: Foot trajectory for a bounding
speed of ẋ = 0.5m/s.

During the stance phase the foot performs a hor-
izontal stroke:

∆L = ẋTst (3-10)

where ẋ is the robot’s desired velocity defined by
the external operator. At touch down the hor-
izontal speed of the feet expressed in the base
frame is indeed of the same amplitude of the
robot’s speed but with opposite sign. Continu-
ity and smoothness conditions are respected by
choosing suitable values of the Bézier parame-
ters. The resulting foot trajectory in the horizon-
tal frame H for a speed of ẋ = 0.5m/s is shown in
Fig 3-6. The horizontal frame H is the reference
frame that shares the same yaw and origin of the base frame but is rotated in pitch and roll
like the world frame (hence horizontal).

3-3-3 Haptic Touchdown

As mentioned in Section 3-3-1 the triggering of the front legs takes place in an event-driven
fashion when they actually touch down the ground. This makes our controller more robust
against possible external disturbances or changes in the terrain that might accumulate after
a few cycles and would mean the force impulse to be applied delayed or in advance (e.g., in
the air) causing CoM tracking errors and possible loss of stability.
This choice highlights the sensing function of forelimbs in the discovery of the environment
in the direction where the robot is heading to.

3-3-4 Kinematic Adjustments

A desired foot trajectory p(t) during swing phase is obtained as mentioned above while the
desired foot trajectories during stance phase is obtained by double integration of the reference
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force profiles u(t) provided by the offline optimization. These trajectories have been planned
in the world frame W, concurrently with the desired CoM trajectory cd(t) and the desired
trajectory of the trunk orientation θd(t). The desired position of the base frame bd ∈ R3 can
be easily obtained for every time instant by considering the fixed offset between robot’s CoM
and the origin of the base frame, as in the case of the single rigid body model (see Section
2-1-2). It is then necessary to map these quantities in a robo-centric reference frame. In
particular we need to map them into the base frame B because in that frame it is defined
the inverse kinematics of HyQ that is used to compute the reference joint positions that are
then provided to the whole-body controller [30]. The standard transformation from world
frame to base frame B is performed using the desired trajectory of the robot and it can be
performed offline. Another possibility, however, is to perform the mapping online and to
employ the actual state of the robot (e.g., measured base position and velocity in the world
frame bm and ḃm) to partially compensate external disturbances [114]. This mapping is
performed in two steps, a transformation from world frameW to horizontal frame H first and
a transformation from horizontal frame H to base frame later B:

• linear kinematic adjustment: this is the mapping of the desired foot trajectory p ∈ R3

from the world frame W to the horizontal frame H:

Hp = p− bref (3-11)

Hṗ = ṗ− ḃref (3-12)

where:
bref = bd + α(bd − bm) (3-13)

• rotational kinematic adjustment: the feet’s current positions in the base frame Bp can
be computed from the corresponding value Hp through the rotation matrix BRH(θref )

Bp =B RH(θref ) ·H p (3-14)

Bṗ =B ṘH(θref ) ·H p +B RH(θref ) ·H ṗ (3-15)

where:
θref = θd + β(θd − θm) (3-16)

and through the desired θd and the estimated θm orientation of the robot:

α, β ∈ [0, 1] are tuning parameters that can change the amount of error compensation per-
formed by the kinematic adjustment. For α = β = 0 the linear and angular base reference
trajectory will correspond to the desired one; if instead α = β = 1 the reference base pose will
correspond to the estimated one and the homogeneous transformation will make sure that the
predefined foot position in the world frame p is achieved, regardless of possible mismatches
between the planned and the estimated base pose. The benefit of the kinematic adjustment,
can be therefore summed up in the two following points [114]:
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1. keep foot clearance: during the feet swing phase the strategy explained above ensures
that the desired foot clearance from the ground is achieved, regardless of possible de-
viations between the desired and the estimated pose of the base. This is particularly
beneficial in the case of blind locomotion where no exteroceptive information about
the surrounding environment is provided to the robot and, therefore, ensuring a prede-
fined minimum clearance from the ground might be crucial to avoid possible unexpected
obstacles;

2. base pose and feet decoupling: during the stance phase, thanks to this strategy, it is
possible to ensure that possible disturbances in the feet (e.g., foot slippage or unexpected
obstacles) do not affect the desired behavior of the robot’s trunk. This is because a
full kinematic adjustment (i.e., α = β = 1) will completely remove possible conflicts
between the joint-space impedance of the legs and the virtual model [8] of the trunk.

3-3-5 Omni-Directional Motion Control

The computed limit cycles can be stabilized by exploiting the impedance control that we
implemented at the joint level. In [10] it is shown that a state feedback is able to stabilize
the periodic limit cycle. It is possible to show that a joint impedance controller has the same
effect; we do not report the details because not relevant with the goal of this Section [23].
The cyclic motion obtained by the offline optimization is a bounding in place and represents
a baseline that does not ensure motion in any specific direction. For this we implemented a
forward/lateral motion controller and a yaw controller.
In order to achieve the desired velocity of the robot we implemented a yaw controller, a forward
motion controller and a lateral motion controller; all of them are based on the principle of
linear momentum conservation:

• Forward motion controller: since we are initially interested in assigning a given forward
motion speed ẋdes to the robot rather than a precise position we designed the forward
motion controller as a Derivative controller of the form:

aix = a∗ix +Kd,ẋ(ẋdes − ẋ) (3-17)

where i = 1, 2, 3, 4 is the leg number and a∗ix is the optimal amplitude which is obtained
by the optimization of Section 3-2-4. Since the values a∗ix of the front legs (a∗fx) are
negative and for the hind legs (a∗hx) are positive this will cause an overall net linear
momentum in the x direction of amplitude 2Kd,ẋ(ẋdes − ẋ).

• Lateral motion controller: the lateral motion controller is designed in the same fashion
of the forward motion controller:

aiy = Kd,ẏ(ẏdes − ẏ) (3-18)
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Figure 3-7: Lateral controller: a sideways movement is achieved by applying the same force
profile to all the four legs during stance.

where i = 1, 2, 3, 4 is the leg number. In this case a∗iy = 0 by defaults since our dynamic
model of section 3-2-1 was restricted to the 2D plane.
In the case of the lateral motion controller all the force profiles will have the same sign
and thus they will all propel the robot in the same direction to reach the desired lateral
speed ẏdes (Fig. 3-7).

• Yaw controller: this controller steers the yaw angle ϕ by creating a net torque around
the vertical z of the horizontal frame H by realizing a lateral force fy of the similar
profile as the sagittal forces fx and fz but of different amplitude (Fig. 3-8) and opposite
sign for front and hind limbs. This causes a overall torque parallel to the z axis of the
horizontal frame H that allows the robot to adjust its heading velocity.

We implemented the yaw controller in the form of a Proportional-Derivative controller
where for each ith leg the amplitude of the later impulse is computed aiϕ as:

aiϕ = Kp,ϕ(ϕdes − ϕ)−Kd,ϕ(ϕ̇des − ϕ̇)
Hpix

(3-19)

The Hpix is the x position of the i − th foothold in the horizontal frame H, which
represents the lever arm of the forces f iy with respect to the CoM of the robot. Notice
that, since this component has a different sign for the front and hind legs, this will cause
impulses of opposite sign on the lateral forces as desired (while in the case of the lateral
motion controller the lateral impulses are all in the same direction defined by ẏdes− ẏ).

In addition to the force impulses performed during the stance phase, it is also important to
avoid that the robot stumbles (e.g., during the feet swing phases); for this reason a suitable
step height must be enforced as explained in Sec. 3-3-4. The stroke length needs to be
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Figure 3-8: Yaw controller: a steering of the yaw angle is achieved by applying force profiles of
opposite signs to front and hind legs.

(a) Sketch of the frontal section of a generic
quadruped (from the back) performing a turn to
the right subject to centrifugal forces.
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(b) Yaw controller performance (tracking of the
heading speed) from experimental data.

Figure 3-9: CoP based lateral stabilization and heading speed controller tracking performances

adjusted according to the speed up to a certain linear speed. In particular the stroke length
of each single step is adjusted using Eq. 3-10. However, when the speed becomes too large
then the corresponding stroke length exceeds the limits of the leg’s workspace and the joint
kinematic limits are reached. In this case the stroke length must thus be fixed to the maximal
feasible value and the Tst should be reduced to match the desired foot speed during the stance.
This was not an issue for the speed ranges of the current implementation (up to 0.6m/s),
however, we leave to future works the implementation of this feature.
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3-3-6 Center of Pressure Aware Lateral Stabilization

The above mentioned speed controllers vary the amplitudes of the baseline bounding gait on
place, computed offline, in order to adapt it to the user-defined linear and angular velocities.
This changes the orientation of the GRFs and, consequently, affects the CoM dynamics and
overall dynamic stability of the robot. While we noticed that the sagittal dynamics of the
bounding gait (on the (x, z) plane of the horizontal frame H) was successfully stabilized by
the joint-space impedance controller, we also realized that the lateral stability was marginally
stable, especially during turning maneuvers.

Furthermore, during fast turning maneuvers with high angular and forward linear velocity
of the base, centrifugal accelerations acf will arise that should be appropriately taken into
account (see Fig. 3-9a)

acf = Hẋ
2

r
(3-20)

where r is the instantaneous radius of curvature r =H ẋd/ϕ̇d, Hẋd is the desired forward speed
in the horizontal frame H and ϕ̇d is the desired angular speed.
Considering the effect of the new impulse amplitudes and of the centrifugal acceleration acf ,
the CoP (defined on the line between the two stance legs) will then be shifted outwards with
respect to the turn, thus reducing the lateral stability margin represented by the distance s
between the CoP and the foot along the support line of the double stance phase (e.g., Fig.
3-9a). This also results in unloading the internal leg during the turn. Our strategy consists
in moving the feet laterally by an offset ∆yf to restore the desired lateral stability margin s∗

and, as a consequence, to re-equilibrate the force distribution between the two stance legs.
As a consequence of this offset ∆yf = (acfh)/g the legs will take on a certain leaning angle:

ϕlean = atan(∆yf
h

) (3-21)

where h is the height of the CoM of the robot. The legs then align with the contact forces
(whose lateral component compensates for acf ) and no extra torque is applied on the Hip
Abduction/Adduction joints (see Fig. 3-9(b)). Furthermore, it can favorable (in terms of
energy efficiency and robustness with respect to the joint kinematic limits) to roll the trunk
by the same leaning angle [115, 116] s. t. φ = ϕlean. The legs, in this way, get aligned with
the main axis of the frontal section of their manipulability ellipsoid.

3-4 Experimental Results

The experimental results presented in this Section are composed of data collected both in
simulation and on the real hardware. A few samples of the collected data are shown in the
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Figure 3-10: Snapshots of an experiment of self-stable bounding gait performed on the HyQ (we
can see a flight phase in the middle picture). The time passing between two neighboring frames
is of 70 ms.
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(a) Simulation results with D = 0.4.
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Figure 3-11: Simulation and Experimental results recorded while having HyQ bound on flat
terrain. The reported data show the vertical tangential contact force, the vertical contact force,
the duty factor and the pitch dynamics (from top to bottom) for the left-front leg.

accompanying video1.
All simulations and experiments own a transient time where the robot is accelerated from the
static configuration to a cyclic steady state were the robot is bounding in place. In order to
safely carry out this initial phase we gradually increase the feedforward impulses from zero
to the steady state values which have been computed offline by the optimizer (as in Section
3-2-4) in the time span of 10 gait cycles. Similarly also the leg retraction is gradually increased
from zero to the desired value in the same time interval.
Once this initial transient has finished the robot enters the steady state regime where it can
bound on place in a stable manner. After this, the motion controllers of section 3-3-5 can
be activated to move the robot in an arbitrary direction. Plots of this condition are given in
Fig. 3-11a: in the upper plot it is possible to see for both front and hind legs the horizontal
feedforward forces fx and the generated ground reaction forces in the same direction. In

1https://www.youtube.com/watch?v=005BMWixqsQ
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Figure 3-12: Joint torques of the left front limb (LF) in red: Hip Abduction-Adduction (HAA)
above, Hip Flexion-Extension (HFE) in the middle and Knee Flexion-Extension (KFE) in the
bottom.

particular the shown data refer to the left front and left hind legs.
In the middle plot we can see that the amplitude of the vertical feedforward force profiles of
the left front leg afz is slightly higher than the one of the left hind leg ahz, this is the result
of the asymmetric model that keeps into account the fact that the CoM of HyQ’s trunk is
shifted 2cm to the front. This offset of the CoM position highlights the need of a precise
model identification [117, 118, 119]
The use of the kinematic adjustment significantly mitigates the spike at touch down which is
due to the non zero vertical velocity of the feet at the end of the extension phase. Thanks to
the mapping of the generated feet trajectories from world frame to base frame, as in Section
3-3-4, the effects of the vertical and angular velocity of the CoM are cancelled out and the
vertical velocity of the feet is strongly reduced, resulting in a softer touch down.
The limit cycle periodicity of the pitch and the almost constant duty factor shown in the
lower plot of Fig. 3-11a demonstrate that the system is successfully stabilized in simulation.

We compare the data of the simulation we the data of Fig. 3-11b recorded during the hardware
implementation. We find out that the same limit cycle stability of simulation is successfully
obtained also on the hardware (see Fig. 3-10 for three snapshots of HyQ bounding). The
shown data refer to a bounding gait of total gait cycle of 400ms and a duty factor about
D = 0.45. The retraction of the leg adopted for this experiment was of 7cm, about one tenth
of the legs length.
Fig. 3-12 shows that joint torques are safely far from their limits.
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3-5 Summary

In this Chapter we have shown the method and the preliminary results of our approach
for the generation of a stable bounding gait. The control framework was tested on HyQ,
demonstrating a successful omni-directional bounding in a range of speeds between 0 and
0.6m/s. Some implementation details such as the kinematic adjustment and the haptic touch
down have turned out to play a role of paramount importance in the reduction of impact
losses and in the increase of robustness.
The following main concepts and contributions have been presented in the course of this
Chapter:

1. an omni-directional bounding gait has been developed in such a way to be able to
instantaneously react to possible disturbances or to variations in the desired velocity
set by the external operator;

2. the stabilization along the sagittal plane was achieved by means of an offline optimiza-
tion that determined intensity of the force impulses needed to achieve a stable limit
cycle. The resulting stability was evaluated through the eigenvalues of the linearized
Poincaré map.

3. the lateral stabilization, in case lateral translations and/or abrupt turns in the yaw
direction, was achieved with a stability criterion based on the CoP (defined along the
support line of the two stance legs).

The current approach is valid for flat terrain but has also been tested on moderate height
variations of the ground, in the order of 5% of the leg length (up to 4cm); in the future works
we intend to test the robustness of our approach with different ground stiffness and damping,
with consistent changes in the terrains level and slopes.
Besides this we intend to tackle the problem of hyperdynamic turning motions, e.g., quickle
rotate by controlling the roll of the trunk while bounding on curved trajectory.
The optimization implemented in this Chapter is computed offline and provably stabilizes the
bounding gait at different speeds allowing the robot to instantaneously choose any arbitrary
direction. In the future we intend to embed the optimization in the controller in a Model
Predictive Control (MPC) manner in order to continuously adjust the foot position to mini-
mize joint torques.
Another important feature to be added ot the future works is an adaptation to rough terrains
by changing the switching time of the back legs.
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Chapter 4

Wrench-Based Feasibility Analysis of
Legged Locomotion

4-1 Introduction

Legged locomotion in rough terrains requires the careful selection of a contact sequence along
with a feasible motion of the Center of Mass (CoM). In case of an unexpected event (e.g.
changes in the terrain conditions, human operator commands, external force disturbance,
inaccuracies in the state estimation and in the terrain mapping, etc.) replanning is an im-
portant feature to avoid accumulation of errors. As a consequence, ideal motion planners for
complex terrains face the conflicting requirements to be fast but accurate. Approaches that
use simplified dynamic models are fast but less accurate because they only capture the main
dynamics of the system [22]. On the other hand, other approaches that use the whole-body
model of the robot and provide particularly accurate joint torques and position trajectories are
not suitable for online applications in arbitrary terrains because of their high computational
complexity. A third option consists in offline learning primitives and behaviors generated with
the more accurate whole-body models that can be later quickly realized in real-time [53].

The present Chapter tackles this issue using simplified dynamic models that still contain
sufficient details of the system. The use of the centroidal dynamics [29] coupled with the
Contact Wrench Cone (CWC)-based planning represents a step in this direction, allowing to
remove the limitation of having coplanar contacts (as for Zero Moment Point (ZMP) based
approaches) and thus increasing the complexity of motions that can be generated [68, 70].
This has also led to the formulation of algorithms that can efficiently verify robots stability
in multi-contact scenarios [78, 120, 121]. Such approaches however still fail to capture some
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properties of the robot such as the actuation limits, the joints kinematic limits and the
possible self-collisions. These properties become more and more important with the increasing
complexity of the environment (motion in confined spaces) and I believe that they should not
be neglected in motion planning. To the best of my knowledge, while actuation constraints
have been considered at the control level [122, 123], this is the first time that a framework for
the formulation of actuation consistent online motion planners for dynamic motion in rough
terrains is provided.
As later explained, a key aspect of this strategy consists in devising CoM trajectories that
are guaranteed to respect the actuation and friction constraints, without explicitly optimizing
neither the joint torques nor the contact forces.

Contribution:
In this Chapter we address the problem of devising actuation-consistent motions for legged
robots and, in particular, we propose the four following contributions: a) first, we introduce
the concept of Actuation Wrench Polytope (AWP) which complements the CWC, adding
the robot-related constraints such as its (configuration dependent) actuation capabilities.
The consideration of both the environment-related constraints (the CWC) and the robot-
related constraints (the AWP) leads to the definition of a second convex polytope that we
call Feasible Wrench Polytope (FWP). This can be seen as a development of the Grasp
Wrench Set (GWS) previously proposed for robotic grasping [74]. Disregarding the constraints
due to self-collision and kinematic joints limits, the Feasible Wrench Polytope (FWP) can
then be used as a sufficient criterion for legged robots stability; b) second, we exploit recent
advancements in computational geometry [124, 125] to compute the vertex-description (V-
description) of the FWP, drastically reducing the computation time with respect to the
double-description (D-description) based methods [126]; c) third, we adapt the concept of
vertex-based feasibility factor to the FWP, as in [74], to evaluate online the feasibility of
a motion plan for legged robots. d) Finally, we exploit this feasibility factor for the online
generation of CoM trajectories that are statically stable and actuation-consistent.

Outline:
The remainder of this Chapter is organized as follows: we first discuss the previous research
in the field of wrench based feasibility analysis with a special consideration for the robot
stability and actuation-consistency (4-2). We then introduce the computation of the AWP
[1] and an efficient strategy to calculate the V-description of the FWP (4-3). Section 4-4
introduces the FWP-based feasibility metric and Section 4-5 describes how this can be used
for online motion planning. Section 4-6 presents the simulations and experimental results
we obtained by implementing our strategy on the Hydraulically actuated Quadruped (HyQ)
robot [127]. Finally, 4-7 draws the conclusions with a brief discussion on the results and on
future developments.
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4-2 Related Works

Wrench based feasibility analysis is not a novel idea in robotics. In the field of Cable-driven
Parallel Robots (CPR) the set of all the configurations that can be realized respecting the max-
imum tension in the ropes is indicated under the name of Wrench-Feasible Workspace (WFW)
[128], [129]. The WFW is used to analyze the robot’s capability to carry loads, but it does
not consider constraints that might arise from the interaction with the environment, such as
unilaterality and friction. The idea of modeling the wrench admissible region is also present
in the field of mechanical fixtures and tolerance analysis [130] where reciprocity of twists and
screws is exploited to characterize the mobility conditions of any couple of faces in tolerance
chains.
On the other hand, in the robotic grasping community it is common to consider sets of
wrenches respecting frictional constraints [73]. When considered, actuation limits take the
form of an upper bound on the magnitude of the normal contact force. Composing the con-
tribution of each contact friction cone, a GWS can be defined [74], representing a subset of
the task wrench space in which a robust grasp against external disturbances (up to a fixed
upper bound) is guaranteed. Such actuation constraints, however, may depend on the joint
configuration but they usually disregard the fact that the maximal normal force cannot be
coupled with any tangential force component; the most common example of this strategies is
to bound the friction cones with a predefined maximum normal force component, regardless
the value of the tangential components.
In legged locomotion the seminal work of Takao et al. has studied the problem of finding
an analogous polytope named Feasible Solution of Wrench (FSW) in multi-contact configu-
rations [67]. The CWC margin then appeared as a stability criterion for legged locomotion
suitable for non-coplanar contacts and finite friction coefficients [68]. Dai et al. in [71, 70]
have shown how to exploit a CWC margin to obtain a convex optimization formulation that
can concurrently plan CoM and joints trajectories of legged robots on complex terrains. This
optimization, however, does not show computational performances compatible with online
motion planning. On a similar line, Caron et al. [131] have focused on improving the real-
time performances of 3D motion planning, either exploiting the double-description of the 6D
wrench polyhedra or by considering lower dimensional projections of the CWC defining full-
support areas. The latter, coupled with a linear pendulum model, led to the definition of the
pendular support area [132].
Despite the excellent results shown in this field, the lack of successful experimental implemen-
tations on the hardware is mainly due to the fact that often the desired complex movements
require torques to exceed the limits of the actuators. Moreover, the actuation capabilities be-
come even more critical when the robot interacts with an environment of complex geometry.
Indeed, in these environments, it is very likely that the robot is required to move to kinemat-
ically inconvenient configurations. Therefore, an accurate evaluation of the robot actuation
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capabilities takes on paramount importance.

4-2-1 Static Force polytopes

Actuator force/torque limits and their consequences on the overall performances in the task
space have been analyzed for decades in the field on mechanical industrial manipulators
[133, 134, 135] and, more recently on cable driven parallel robots (CPR) [136] and robotics
hands [74].
Force/wrench ellipsoids (or hyperellipsoids) have been identified as useful tools to assess the
control authority at the end-effector of serial mechanical chains. However, they represent a
qualitative metric and they do not hold any information relative to the absolute magnitude
of the wrench that a mechanical chain can exert. Their derivation can be obtained starting
from the consideration of the theorem of kinetic energy (or work-energy theorem) that states
that the work done by all forces acting on a particle equals the rate of change in the particle’s
kinetic energy. In case of null kinetic energy change, we have then:

Pi + Pe = 0 (4-1)

where Pi and Pe are the internal and external power. The former represents the power
generated by the actuators whilst the latter is the power exerted on the environment by the
end-effector. In case of an industrial manipulator, they can be written as:

Pi = τT q̇ and Pe = −wTν (4-2)

Eq. 4-1 represents a static relationship between the generalized task-space wrenches w ∈ Rm

and the generalized joint-space forces τ ∈ Rn. Exploiting the mapping from joint to task-space
velocities ν (see, for example, Eq. 2-10) we can then write:

τT q̇︸︷︷︸
Pi

−wTν︸ ︷︷ ︸
Pe

= τT q̇ −wTJ(q)q̇ = 0 (4-3)

which leads to the following static relationship:

τ = J(q)Tw (4-4)

where J(q) ∈ Rm×n is the end-effector Jacobian. If we then consider Eq. 4-4 in combination
with a unit hypersphere Sτ in the joint torque space:

Sτ =
{
τ ∈ Rn | τTτ ≤ 1

}
(4-5)

we can then obtain a new set (the force/wrench ellipsoid Ew) that describes how Sτ is mapped
into the task-space:

Ew =
{
w ∈ Rm | wTJJTw ≤ 1

}
(4-6)

Romeo Orsolino Doctor of Philosophy Thesis



4-2 Related Works 61

Figure 4-1: The mapping between joint-space torques and the task-space forces at the end-
effector. In this example the dimension of the torques space dim(Pτ ) = n = 3 is equal to the
dimension of the manifold of the contact forces dim(Pw) = m = 3.

As of definition, the force ellipsoid Ew represents the pre-image of the unit hypersphere Sτ in
the joint space under the mapping given by J(q)T . The lengths of the semidiameters of Ew are
the inverse of the square root of the singular values of the Jacobian J [15]. The ratio between
the greatest and the smallest eigenvalue of J is, therefore, used as a measure of anisotropy of
the ellipsoid and of the force amplification properties of the mechanical chain.

In a similar fashion, further exploiting Eq. 4-4, we can then also analyze the pre-image
of the joint torques hypercube Pτ , i.e., the set of all joint torques τ comprised within the
manipulator’s actuator limits:

Pτ =
{
τ ∈ Rn | − τ lim ≤ τ ≤ τ lim

}
(4-7)

The vector τ lim ∈ Rn contains in its elements the hardware dependent lower and upper
bounds of the values that limit the generalized joint torque vector τ . The hypercube Pτ can
therefore be seen also as system of 2n linear inequalities that constrain the joint torques [135].
The notation used in Eq. 4-7 assumes symmetric joint torques limits which is usually the
case for the most common modern electric actuators; Pτ is in this case a zonotope with its
center in the origin (see Appendix B-1). However, in the case of actuators with asymmetric
joint torque limits (e.g., for velocity dependent torque limits, for hydraulic actuators with
different chamber volumes or also for configuration-dependent torque limits as in the case of
linear actuators with variable lever-arm) this notation can be updated to include such scenario
without loss of the properties that are going to be described in the following sections. The
hypercube Pτ will still represent then a zonotope but its center will not correspond to the
origin of the joint torque space.

The task-space force/wrench polytope Pw, pre-image of Pτ , can be written as follows (also
see Fig. 4-1):

Pw =
{
w ∈ Rm | − τ lim ≤ JTw ≤ τ lim

}
(4-8)

While the force ellipsoid Ew can be used as a qualitative metrics of the robot’s force am-
plification capabilities, the force polytope Pw also includes quantitative informations about
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the maximum and minimum amplitude of the wrench that the robot can perform at the
end-effector.

Force ellipsoids and force polytopes have been originally introduced for fixed-base non-redundant
serial mechanical chains with m = n where the Jacobian matrix J is thus invertible and the
V-representation of the force polytopes can be easily obtained by the simple inversion of JT :

wlim = J−Tτ lim (4-9)

where wlim is a vertex of the force polytope Pw. This is an especially convenient condition
in which a one-to-one relation between joint-space torques and task-space wrenches exists.
In the case of a three dimensional arm (n = m = 3), for example, a violation of one joint
torque limit will correspond to a point on a facet of Pτ and also to another point on a facet
of the task-space polytope Pw. Similarly, a violation of two (or three) joint torque limits will
correspond to a point on an edge (or a vertex) of the Pτ and also to another point on an edge
(or a vertex) of the task-space polytope Pw. Please see Appendix B-1 for the definitions of
facets, edges and vertices for n = m > 3.

Successively the force ellipsoid and force polytopes concepts have been extended to redundant
manipulators [134] in static conditions. At a later stage, also the concept of global force
ellipsoid for parallel manipulators was presented [133], however, such extension has not been
yet introduced for force polytopes.

Similar mathematical derivations and conclusions can be obtained for the mapping between
joint- and task-space velocities which shares dual properties with respect to joint- and task-
space forces. As a consequence, starting from the theorem of the kinetic energy, velocity (or
manipulability) ellipsoids and polytopes for static equilibrium conditions can be defined.
An extension of the manipulability ellipsoid that considers the effect on gravity on fixed-
base redundant manipulators in static conditions was presented in [137]. This extension was
derived starting from the dynamic equation of motion for fixed base manipulators where zero
joint space velocity q̇ and null external forces w were assumed:

M(q)q̈ + c(q, q̇)︸ ︷︷ ︸
=0

+g(q) = τ + JTs (q)w︸ ︷︷ ︸
=0

(4-10)

Under these conditions, the dynamic manipulability ellipsoid Ev and polytope Pv were defined
as:

Ev =
{
M(q)−1(τ − g(q)) | τTτ ≤ 1

}
(4-11)

Pv =
{
M(q)−1(τ − g(q)) | − τ lim ≤ τ ≤ τ lim

}
(4-12)

In this case the joint torques τ are employed to determine the feasible accelerations that
can be performed at the manipulator’s end-effector and they can then be exploited as a
manipulability measure.
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The further extension of manipulability ellipsoids to dynamic conditions has been studied by
considering the complete Equation of Motions (EoM) without imposing any assumption on
the joint-space velocity and acceleration [135, 138]
In the following Sections I will describe how such concepts close to the dynamic manipulability
ellipsoids have led me to the definition of dynamic force/wrench polytopes for floating-base
platforms. I will then explain how these tools can be useful for the analysis of the actuation
capabilities of floating-base legged robots. Despite the definition valid for dynamic conditions,
for the reasons explained in the continuation of this Chapter, I will use these force polytopes
under static assumptions. This will lead me to the definition of the FWP, in Section 4-3-3,
and to the formulation of the local feasible region in Chapter 5.

4-3 Wrench-Based Feasibility Analysis

Actuation limits significantly affect the wrench margin of a legged robot, i.e., the amount of
wrench that can be exerted on a robot without causing it to lose its contacts stability. As
an example let us consider a human(oid) trying to climb a vertical chimney shown in 4-2.
Here, the Contact Wrench Cone (CWC) is obtained through the Minkowski sum [139, 19] of
the friction cones Ci, represented by the pink areas (Fig. 4-2a left) where i = 1, . . . , nc and
nc = 4 is the number of contacts with the ground. In the CWC-based approach the margin is
quantified as the minimal generalized distance between the gravito-inertial wrench wGI and
the boundary of the CWC. The CWC margin represents the maximum allowed wrench that
can be applied (or rejected in case of a disturbance) in order to keep stable contacts (i.e., no
slippage).
In Fig. 4-2a (right) the CWC margin s has an infinite value s = ∞, i.e., the force closure
condition is achieved. This happens because the friction cone representation assumes that
a contact force with an infinite normal component can be realized at the contact. This
misleading result is the consequence of not taking the actuation limits into account.

On the other hand, imposing the actuation limits can be rephrased as adding a further
constraint on the magnitude of the admissible contact forces with a force polytope Pwi, with
i = 1, . . . , nc, that depends on the actuation capabilities and on the current configuration,
e.g., Fig. 4-2b(left). This limits the set of applicable body wrenches (feasible wrenches)
that the human(oid) can apply on its own CoM to keep himself stable. In Fig. 4-2b(right)
the bounded volume represents the result of the Minkowski sum of the four bounded friction
polytopes (intersection of friction cones Ci and force polytopes Pwi) after considering the torque
limits that reflect themselves as maximal contact forces. This convex region is a subset of the
CWC and we call it Feasible Wrench Polytope (FWP) in the remainder of this Chapter. This
bounded polytope can also be computed as the intersection of the CWC and the Actuation
Wrench Polytope (AWP), for more details see 4-3-3.
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(a) If only the friction cones Ci are considered, the set of feasible wrenches (the CWC) corresponds
to the whole wrench space. This yields an unlimited feasibility margin, regardless the mass of the
human/robot.

(b) If both friction cone Ci and actuation constraints Pwi are considered, the overall set of feasible
wrenches (the FWP) will be a limited set. This yields a limited feasibility margin and, therefore, to a
more realistic result than the purely frictional case.

Figure 4-2: Planar example of chimney climbing: unbounded friction cones Ci give origin to an
unbounded feasible wrench sets named CWC (top). Bounded friction polytopes Pwi, instead,
generate the bounded feasible wrench set FWP (bottom).

According to our definition, the margin s is limited to a finite value, as in Fig. 4-2b(right),
showing that the human(oid) might fall if his limbs are not strong enough to support his
body’s weight and thus achieving a description closer to reality.

A motion planner based on these tools will devise trajectory that are consistent with the
actuation limits of the robot, however it is necessary to enforce this consistency also in the
underlying motion controller. We consider the development of such controller to be out of
the scope of this dissertation and we assume this as given. Examples of suitable controllers,
however, can be found in the literature, e.g., [123, 23].
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4-3-1 The Dynamic Force/Wrench Polytopes

In this section we illustrate the procedure to compute the dynamic force/wrench polytopes,
i.e., the set of feasible contact wrenches that a tree-structured robot can perform at its contact
points with the environment while moving. For this, let us consider the EoM of a floating-base
robot with nf branches (e.g., legs and/or arms), nc of them in contact with the environment,
each of them having a number nkl of actuated Degrees of Freedom (DoFs), n =

∑nf

k=1 n
k
l being

the total number of actuated joints:

M(q)ṡ + C(q, s) + g(q) = Bτ + JT (q)f (4-13)

where q =
[
qTb qTj

]T
∈ SE(3)×Rn represents the pose of the floating-base system, composed

of the pose of the base-frame qb ∈ SE(3) and of the coordinates qj ∈ Rn describing the
positions of the n actuated joints. The vector s =

[
νTb q̇Tj

]T
∈ R6+n is the generalized

velocity, τ ∈ Rn is the vector of actuated joint torques while C(q) and g(q) ∈ R6+n are the
centrifugal/Coriolis and gravity terms, respectively. M(q) ∈ R(n+6)×(n+6) is the joint-space
inertia matrix, B ∈ R(6+n)×n is the matrix that selects the actuated joints of the system.
f ∈ Rm·nc is the vector of contact forces1 that are mapped into joint torques through the
stack of Jacobians J(q) ∈ R3nc×(6+n). If we split 4-13 into its underactuated and actuated
parts, we get: [

Mb Mbj

MT
bj Mj

]
︸ ︷︷ ︸

M(q)

[
ν̇b

q̈j

]
︸ ︷︷ ︸

ṡ

+
[
cb
cj

]
︸ ︷︷ ︸
C(q,s)

+
[
gb
gj

]
︸ ︷︷ ︸
g(q)

=
[
06×n

In×n

]
︸ ︷︷ ︸

B

τ +
[
JTb
JTq

]
︸ ︷︷ ︸
J(q)T

f . (4-14)

By inspecting the actuated part (bottom line corresponding to n equations), that results from
the concatenation of the equations of motions of all the branches, we see that Jq ∈ R(m·nc)×n

is block diagonal and we can use it to map joint torques into contact forces for each leg
individually. We will see in 4-5-1 that this is convenient because it avoids using the term Jb
that couples the limbs together though the base.

On a similar line to what defined in [133] as the dynamic manipulability polytope, I can
now define a quantity that I call dynamic force/wrench polytope Ai for each individual i− th
branch of the tree structured robot:

Ai =
{
fi ∈ Rm | MT

biν̇+Miq̈i+c(qi, q̇i)+g(qi) = τi+JTi fi, −τ limi ≤ τi ≤ τ limi
}

(4-15)

where i = 1, . . . , nc is the contact index and nc is the number of active contacts between
the robot and the environment. The vectors qi ∈ Rnl and τi ∈ Rnl represent the joint-space
position and torque of only those joints that belong to the i− th limb while nl represents the
number of actuated DoFs of that limb. If m = 3 then the contact wrench fi ∈ Rm consists

1Note that the HyQ robot has nearly point feet, henceforth we thus consider for this robot pure forces at
the contact point and no contact torque (m = 3).
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Figure 4-3: Representation of the friction cone Cj and force polytope Aj on one foot of the HyQ
robot (j is the leg index). The purple arrows represent the contact forces and the green point is
the CoP.

of pure forces while if m = 6 then a non-zero contact torque is also present. For a partial
list of the main symbols employed in this dissertation and their meaning please refer to the
Notation section.
In Fig. 4-3 an example of dynamic wrench polytope is drawn for the HyQ robot: each limb
of this robot has three actuated DoFs and thus nl = 3. Ai is then a polytope of 2 · 3 = 6
facets and 23 = 8 vertices.

Eq. 4-15 purposely omits the first line (six equations) of Eq. 4-14 referred to the unactuated
floating base. This corresponds to neglecting the coupling among the legs and to considering
each limb individually, thanks to the block-diagonal structure of the term Jq.
An alternative approach for the projection could consist in preserving the coupling among the
limbs constraint, thus preserving the explicit relationship between actuated joint torques and
the wrench acting on the un-actuated base link. This could lead to a definition of a unique
unbounded cone defined in the N dimensional space of the underactuated system. The high
dimensionality of the resulting set would, however, significantly harm the practical usefulness
of this object.
As an opposite, the advantage of computing separate individual force polytopes Ai for each
limb of the robot as proposed in this dissertation is that we can limit the dimensionality of
the considered geometrical objects. Furthermore, we can also treat each force polytope Ai
as a wrench capability measure of the corresponding limb. As a final consideration, we can
observe that in static conditions (q̇ = q̈ = 0) Eq. 4-15 can be written as:

Ai =
{
fi ∈ Rm | g(qi) = τi + JTi fi, −τ limi ≤ τi ≤ τ limi

}
(4-16)

The term g(qi) represents the effect of gravity acting on the individual limb i = 0, . . . , nc.
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Figure 4-4: Representation of the force polytopes (blue) and of the friction cones (pink) of each
single leg in 3D (left) and projected on the (Fx, Fz) plane (right). The offset fleg is due to the
bias term δ in 4-17.

From a geometrical point of view g(qi) can also be seen as an offset term that translates
the polytope Ai in the same direction of the gravity vector, i.e., towards the negative side
of the fz direction of the wrench space (see, for example, the offset fleg in Fig. 4-4). For a
predefined set of torque limits τ limi an increase in the legs mass and, as a consequence, a large
offset term g(qi), will cause a decrease in the set of feasible positive contact forces. Under the
static conditions as defined in Eq. 4-16, the definition of Ai corresponds to the static force
polytope defined in Eq. 4-12 [137].

4-3-2 The Actuation Wrench Polytope (AWP)

In this Section we illustrate the procedure to compute the AWP that encodes the actuation
capabilities of the robot. The next step is to compute the V-representation of the force
polytopes Ai; note that this requires the inversion of the limb Jacobian matrix JTi :[

f lim
i,k

mlim
i,k

]
= JTi

#(MT
biv̇ + Miq̈i + ci + gi︸ ︷︷ ︸

δ

−τ lim
i,k

)
, k = 1, . . . , 2nl (4-17)

where τ lim
i,k ∈ Rnl is the k − th vertex of the joint-space torque set Pτ (see Fig. 4-5).

[f lim
i,k

T
,mlim

i,k
T ]T ∈ Rm is the k − th vertex of the force/wrench polytope Ai. In the HyQ

quadruped robot, each leg has three DoFs (nl = 3) and the feet can be approximated as point
contacts (m = 3), therefore the angular component mlim

i,k of the vertex is null.
(.)# is the Moore-Penrose pseudoinverse, and Ji ∈ Rm×nl is the Jacobian matrix of the i− th
contact point. In the quadruped case Ji is a square 3 × 3 matrix and a simple inversion is
sufficient. Note that, for redundant and for underactuated limbs, the use of the pseudo-inverse
may lead to solutions that actually violate the bounds given by the torque limits. In such
cases, solving an inequality-constrained quadratic program is a viable solution [134].
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Another option for the computation of the V-representation of Ai is to perform a vertex-
enumeration algorithm on its H-representation; in the case of redundant limbs, differently
from Eq. 4-17, this strategy leads to a set of vertices that does not depend on the arbitrary
choice of the pseudo-inversion.

In the case of our quadruped robot HyQ, Ai is a polytope with 23 = 8 vertices and its
shape changes nonlinearly with the joint configuration because of the nonlinearities in Ji2.
As an example, we compute the force polytope for each leg in a quadruped robot. Fig. 4-
4(left) shows the four force polytopes (together with the friction cones) obtained for a generic
quadruped robot. Fig. 4-4(right) shows a lateral view that depicts the same force polytopes
projected onto the (Fx, Fz) plane.

Figure 4-5: Pictorial representation of the subsequent mappings that project the set of joint
torques into a set of contact wrenches. In this example the contact wrench is a pure force (fx, fz

components only) and no angular component mlim ∈ R3 of contact wrench is considered. The
force/wrench polytope Ai and its mapping Ai are therefore both flat polytopes in R3.

In order to compute the AWP, the next step is to add the torque values that are generated
in correspondence to the maximum pure contact forces (as in Fig. 4-5):

wi,k =
[

f lim
i,k

pi × f lim
i,k + mlim

i,k

]
with k = 1, . . . , 2nl , i = 1, . . . , 2nc (4-18)

where pi ∈ R3 represents the position of the i− th contact foot and wi,k ∈ R6 represents the
wrench that can be realized at that foot, both quantities are expressed in an inertial fixed
frame. f limi,k and mlim

i,k represent the linear and angular part of the contact wrench obtained for
the i− th limb and the k− th vertex of the joint-torques set Pw. Since we focus here on point
contacts, however, we have that m = 3 and mlim

i,k is null. Therefore, the set of admissible
wrenches that can be applied at the CoM by the i− th foot/end-effector is:

Wi = ConvHull(wi,1, . . . ,wi,2nl ) (4-19)

with i = 1, . . . , nc. We now have nc wrench polytopes Wi, one for each limb in contact with
the environment. Finally, the AWP corresponds to the Minkowski sum of all the nc wrench

2The torque limits τ lim
i,k may depend on the joint positions, making the dependency of the polytope from

the joints configuration even more complex (e.g., a revolute joint made of a linear actuator with nonlinear
lever-arm).
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polytopes:

AWP = ⊕nc
i=1Wi (4-20)

As defined above, the AWP is a bounded convex polytope in R6 (see Fig. 4-7a) that contains
all the admissible wrenches that can be applied to the robot’s CoM that do not violate the
actuation limits of the limbs in contact with the environment.
Note that the force polytopes Ai are zonotopes whose center is not in the origin, even in the
case in which the set of feasible joint torques Pτ was symmetric. This is because Ai results
from the sum of a symmetric zonotopic term −JTi

#
τ lim and of a nonzero singleton JTi

#
δ as in

Eq. 4-17. This differs from what is generally done when static force polytopes are considered,
e.g., for cable-drive parallel robot and in robotic manipulation for the GWS, where inertial
and Coriolis effects are usually ignored and the ropes/fingers are considered massless [140, 74].

4-3-3 The Feasible Wrench Polytope (FWP)

Note that the AWP does not include the constraints imposed by the environment, namely,
the terrain normal, the friction cones coefficient and the unilateral contact condition (e.g., the
legs can not pull the ground). However, those constraints can be accounted by the CWC [68]
(4-7 center):

CWC = ConvexCone(êi,k), k = 1, . . . ne, i = 1, . . . nc (4-21)

Here ne is the number of edges of the linearized friction cone and:

êi,k =
[

ei,k
pi × ei,k

]
(4-22)

where ei,k ∈ R3 is the k − th edge of the contact point i. We subsequently perform the
intersection of the CWC with the AWP obtaining a convex polytope that we define as FWP
(4-7 right):

FWP = CWC ∩AWP. (4-23)

However, performing the intersection of polytopes in 6D is an expensive operation that re-
quires the D-description [125] of both operands. We then propose a more efficient approach
for the computation of the FWP that:

1. first computes the intersection between the friction cones Ci and the force polytopes Ai
obtaining, for each i − th contact, a 3D bounded friction cone Bi (4-4 right) with µ

vertices bki ∈ R3 (see Fig. 4-6):

Bi = ConvHull(bki ), with k = 1, . . . , µ (4-24)
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2. then composes the wrench by adding the torque, as in 4-18:

b̂ki =
[

bki
pi × bki

]
∈ R6 with k = 1, . . . , µ (4-25)

obtaining in this way the intermediate sets B̂i:

B̂i = ConvHull(b̂ki ), with k = 1, . . . , µ (4-26)

3. finally, the FWP is computed through the Minkowski sum of the B̂i of the nc contacts:

FWP = ⊕nc
i=1B̂i (4-27)

The advantage of this proposed method is that the intersection is performed in 3D rather
than in 6D, which is computationally faster. This is advantageous also for the final step in
4-27 because it avoids computing vertices that will be removed later (e.g., all the vertices
from the AWP with negative contact forces are removed by intersecting with the CWC).

Figure 4-6: Planar 2D example of the steps needed to compute the FWP. The steps 1, 2 and 3
refer to the bullet list above of Eq. 4-24, 4-26, 4-25 and 4-27.

Notice that the algorithms used to compute the Minkowski sum of convex cones are sig-
nificantly different from those meant for bounded polytopes. In particular, as mentioned
in Appendix B-2, the Minkowski sum of polyhedral cones corresponds to performing their
convex hull (i.e., using the ConvexCone(·) operator, as in Eq. 4-21). The same operation
performed on n-dimensional bounded polytopes however, requires specific algorithms based
on the V-description [141] and is less computationally efficient.
Besides that, the force polytopes Ai (and also the intersected polytopes Bi) are 6D full di-
mensional polytopes only when the contact wrench includes a torque component. In the case
of a quadruped with point contacts, instead, only pure contact forces are involved and thus
the force polytopes Ai are flat 6D polytopes (i.e., they have empty interior in R6) even if
their Minkowski sum is a full dimensional polytope in R6.
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Figure 4-7: Pictorial 3D representation of the six-dimensional feasibility polytopes:

(a) The Actuation Wrench Polytope (AWP);

(b) The Contact Wrench Cone (CWC);

(c) The Feasible Wrench Polytope (FWP).

Recent advancements in computational geometry enable the Minkowski sum for bounded
polytopes in n dimensions to be obtained using only the V-description (without being af-
fected by the flatness of the operands) [125], thus resulting in a considerable speed up that
allows Eq. 4-27 to be computed online: for three contact points,i.e., nc = 3, and each poly-
tope Gi composed of about 100 vertices in 6D, Eq. 4-27 can be solved in about 100ms using
Politopix [124]).

4-3-4 Polytope Representation for a Planar Model

To achieve a better understanding of the nature of these polytopes, let us consider the sim-
plified case of a planar dynamic model, as in Fig. 4-4 (right), where each point of the space
is represented through the (x, z) coordinates. In this case the wrench space has three coordi-
nates (Fx, Fz, τy) and can be represented in 3D. Fig. 4-7 depicts instead the AWP (left), the
CWC (center) and the FWP (right) for the same simplified model. From the drawing it is
possible to see that the CWC is a convex cone while the AWP is a bounded polytope; their
intersection, the FWP is therefore also a bounded polytope.

4-4 FWP-Based Feasibility Metric

The CWC margin has been proven to be a universal criterion for dynamic legged stability
[68]. However, the CWC still lacks knowledge of robot’s feasibility constraints such as self-
collisions, actuation and kinematic joint limits. Therefore, in order to plan complex motions
in unstructured environments we will introduce a more restrictive metric, that we generically
call the feasibility metric. This metric incorporates all the properties of the CWC criterion,
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72 Wrench-Based Feasibility Analysis of Legged Locomotion

and additionally the robot’s actuation limits. We leave to future works the development of
another formulation also able to encode kinematic limits and self-collisions.
In order to obtain the feasibility metric we first need to compute the robot’s gravito-inertial
wrench wGI ∈ R6 at the specific robot state that we want to evaluate (also see Eq. 2-30):

wGI = ḣ−wG (4-28)

with:

ḣ =
[
mc̈
k̇W

]
, wG =

[
mg

c×mg

]
(4-29)

where kW ∈ R3 is the robot’s angular momentum and c is its CoM position (both expressed
in the fixed coordinate frame W). The criterion of feasibility can then be defined as:

wGI ∈ FWP. (4-30)

The definition of feasibility metric depends on the type of the representation chosen for the
FWP, i.e., half-plane description (H-description) or a vertex description (V-description).
Note that these two representations are dual and, according to the Minkowski-Weyl theorem,
any polytope can be equivalently described with either representation. In the following we
present a formulation of FWP margin for either representation. In the continuation of this
Chapter, however, only the vertex-based formulation FWP margin will be employed thanks
to the convenient properties of V-description explained in Section 4-3-3.

4-4-1 FWP Half-Plane Description

In the H-representation, the FWP set can be written in terms of half-spaces as:

FWP = {w ∈ R6 | âTj w ≤ bj , j = 1, . . . nh} (4-31)

where nh is the number of half-spaces of the FWP and âj ∈ R6 is the normal vector to the
j−th facet pointing outwards with respect to the polytope. The feasibility criterion expressed
in 4-30 can thus be written as:

HTwGI ≤ b (4-32)

where H ∈ R6×nh is the matrix whose columns are the normals to all the half-spaces that
bound the FWP and ≤ is a component-wise operator. The columns of H can be divided
into two blocks Hc and Ha in order to distinguish the CWC half-spaces from the AWP half-
spaces, respectively: H = [Hc|Ha]. If HT

c wGI > 0 but HT
awGI ≤ 0 then the robot’s state is

consistent with its actuation capabilities but its contact condition is unstable (e.g., friction
limits are violated). Viceversa, if HT

c wGI ≤ 0 but HT
awGI > 0 then the system has stable

contacts but it does not respect the actuation limits. In the latter case, the legged system
might still not fall but it will not be able to realize the desired task.
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4-4 FWP-Based Feasibility Metric 73

If the H-description of the FWP is given, we can provide a definition of robustness that
extends the properties of the CWC margin. In the same line with [70] the feasibility metric
can be defined as the margin m, i.e., the generalized distance of the point wGI from the
boundaries of the FWP [77]. This corresponds to finding the biggest disturbance wrench
wd ∈ R6 that the system can reject. This is equivalent to computing the largest residual
radius m such that the m-ball Bm (centered in wGI) still lies within the FWP:

Bm ∈ FWP (4-33)

where Bm is defined as:

Bm = {wGI + T(pwd
)wd | wT

d Qwd ≤ m} (4-34)

wherem is the feasibility margin. pwd
is the disturbance application point and T(pwd

) ∈ R6×6

is the adjoint spatial transform that expresses it in the world frame W [70]. Q is a positive
definite matrix that is used to deal with the non homogeneous angular and linear units of the
wrench.

4-4-2 FWP Vertex Description

Figure 4-8: A 2D pictorial representation of the
shrunk polytope Ps (left): we see that the factor
s can be seen as the scaling factor of the shrunk
polytope with respect to the FWP.

If only a V-description of the FWP is available,
the distance between wGI and the faces of the
FWP cannot be computed anymore and a differ-
ent definition of feasibility metrics is needed. We
decide to employ in this case a feasibility scalar
factor s ∈ (−∞, 1] adapted by the scaling factor
defined in [74] used to measure the quality of a
robotic grasp quality.
Let us consider a matrix V ∈ R6×nv whose
columns are the vertices vi of the FWP, and a
vector λ ∈ Rnv

+ of non-negative weights where nv
is the number of vertices of the FWP. Every point
inside the FWP can be described with a combi-
nation of weights λi such that

∑nv
i=0 λi = 1. We

therefore define the robot to be in a feasible state
if, for the corresponding wrench wGI , there exists

a λ such that Vλ = wGI , with
∑nv
i=1 λi = 1 and λi ≥ 0 i = 1, . . . , nv.

A preliminary step for the computation of the feasibility factor consists in subtracting the
centroid vc from all the FWP vertices vi, obtaining new translated vertices v̂i (v̂i = vi−vc).
This has the effect of shifting the origin of the wrench space in the centroid, that, in a
V-representation, is a good approximation of the most “robust” point (i.e., the Chebishev
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centre). We then define a new scaled or shrunk polytope Ps centered in the origin (which is
now also the centroid of the FWP). Ps can be expressed in terms of its own vertices v̂si and
of a set of multipliers λsi :

Ps =
{
w ∈ R6|w =

nv∑
i=1

λsi v̂si , λsi ≥ 0, ‖λs‖1 = 1
}

(4-35)

For a better understanding 4-9 (left) illustrates the idea of the shrunk polytope for a 2D
representation.
The FWP’s vertices v̂i are linked to the vertices of Ps through the feasibility factor s:

v̂si = v̂i(1− s), −∞ < s ≤ 1 (4-36)

If, for instance, s = 1 then Ps shrinks into the origin. If we impose λi = (1 − s)λsi , then we
can write the shrunk polytope Ps in terms of the vertices v̂i of the FWP, i.e.:

Ps =
{
w ∈ R6|w =

nv∑
i=1

λiv̂i, λi ≥ 0, ‖λ‖1 = 1− s
}

(4-37)

We can see the feasibility factor as the scalar s that corresponds to the smallest scaled polytope
containing the point wGI . The problem of finding s can be formulated as a (LP) that can be
carried out by any general-purpose solver:

max
λ,s

s

such that: Vλ = wGI

‖λ‖1 = 1− s s ∈ (−∞, 1]

λi ≥ 0 i = 1, . . . , nv

(4-38)

Note that the larger is s, the more robust is the system against disturbances. A negative s
means that the point is out of the polytope and the wrench is unfeasible. When s becomes
zero, it means the point is on the polytope boundary and that either the friction or actuation
limits are violated. Table 4-1 shows the computation time of a Intel(R) Core(TM) i5-4440
CPU @ 3.10GHz with 4 cores for three and four contacts scenarios. The feasibility factor
s, unlike the margin m, is not sensitive to the fact of having different units in the wrench

Table 4-1: Computational features of the feasibility factor s

3 non-coplanar contacts 4 non-coplanar contacts
FWP vertices 436 1118

variables 437 1119
constraints 7 7
LP time [ms] 90 350
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space since it does not encode the concept of distance. On the other hand, for the very
same reason, the factor s of a given stance configuration cannot be compared to another
configuration, because of the different scaling of the two polytopes. Consider for example the
FWP computed for a humanoid robot in single support V1 and in double support V2. The
size of V1 will be considerably larger than the size of V2 because of the increased stability
enhanced by the second stance leg. In both cases however, if the gravito-inertial wrench is
located exactly in the centroid (or in the Chebychev center) of the polytopes V1 and V2, the
feasibility factors s1 and s2 will take on the same values 1.0. Just by looking at the values of
s1 and s2 we are not able to tell which one corresponds to the most robust condition.

4-5 Online CoM Trajectory Optimization

The FWP factor can be used to plan robust CoM trajectories. Hereafter, we present a brief
description of how we used the proposed criterion to plan online motions for our quadruped
robot, that do not violate the actuation limits.
We further extended the capabilities of the locomotion framework [30, 40] by replacing the
original (heuristic) planner with a trajectory optimizer that exploits the proposed feasibility
criterion. This framework realizes a statically stable crawling gait where a base motion phase
and a swing motion phase are alternated (therefore the base of the robot does not move when
a leg is in swing).
To be able to compare with our baseline planner, we opted for a decoupled planning approach
where the footholds and the CoM trajectory of the robot are determined sequentially: first
the future foothold is computed then a trajectory is computed through optimization to drive
the CoM from its actual position to the new support polygon.
In essence, our online Trajectory Optimization (TO) computes during every swing phase the
CoM trajectory to be realized in the next base motion phase using a one-step horizon. The
decision variables of the optimization problem are the X, Y components of the CoM positions,
the velocities and the duration of the base motion phase ∆tbm:

Γ = {cx[k], cy[k], ċx[k], ċy[k],∆tbm}, with k = 1, · · · , N (4-39)

The trajectory is discretized in N equally spaced knots (at time intervals h = ∆tbm/N). Note,
that we here do not optimize the trunk orientation nor the coordinate z. This is because, for
quasi static motions, the predominant acceleration term acting on the system is gravity itself,
and, therefore, the influence of the z coordinate of the CoM on the stability or on the joint
torques is limited compared to the role of the x and x components.
The aim of the optimizer is to maximize the FWP factor s, as in Eq. 4-38, while we enforce
back-ward Euler integration constraints along the trajectory and zero velocity at the trajectory
extremes.

Doctor of Philosophy Thesis Romeo Orsolino



76 Wrench-Based Feasibility Analysis of Legged Locomotion

0 2 4 6 8 10

0.1
0.2
0.3

/ y
[m

]

Lateral shift /y test

0 2 4 6 8 10

0

0.2

0.4

s

Heuristic plan

CWC plan

FWP plan

0 2 4 6 8 10
time [s]

0

200

400

F
z

[N
]

0 0.5 1 1.5

-1000

-500

0

d
z
[N

]

Vertical disturbance dz test

0 0.5 1 1.5
0

0.2

0.4

s

Heuristic plan

CWC plan

FWP plan

0 0.5 1 1.5
time [s]

50

100

150

=
[N

m
]

torques limit

Figure 4-9: Simulation data of the horizontal displacement test (left) and vertical disturbance
test (right). The lateral displacement δy gradually unloads the RF leg while the gradual loading
dz leads the torques to hit their limits. Both these cases are captured by the feasibility factor
that goes to zero whenever either the friction or the actuation constraints are reached.

As a first step to minimize the margin, we evaluate the FWP polytope considering the robot
contact configuration during the next triple support phase. Indeed, even if the CoM moves
during the 4 stance phase, we need to ensure that the robot will be stable also in the sub-
sequent (triple stance) swing phase. Moreover, triple stance is more demanding than the 4
stance phase in terms of torques because the weight of the robot is distributed on a lower
number of legs. Enforcing a triple stance feasibility since the beginning of the trajectory
(where most likely the com position can be infeasible) is not an issue for the optimization
because the robustness is implemented as a soft constraint in the cost function. On the other
hand, this has the effect to naturally drive the CoM toward the future (triple stance) support
polygon.

In case of a quasi-static condition (q̈ = q̇ = 0), Eq. 4-17 reduces to:

f lim
i = Ji(q0i)−T

(
g(q0i)−Bτ lim(q0i)

)
(4-40)

This enables the computation of the FWP just once at the beginning of the optimization.
As a matter of fact, thanks to this condition and to the approximation later explained in
Section 4-5-1, the FWP becomes only dependent on the contact configuration. Then, to
compute the running cost

∑N
k=1 L, we evaluate the CoM acceleration along the trajectory

(h · c̈x,y[k+1] = ċx,y[k+1]− ċx,y[k],∀k) and evaluate the gravito-inertial wrench at each knot
through Eq. 2-30.
To compute the feasibility factor exploiting the V-description we should add the λ vector
as decision variable and the constraints in 4-38. However, the amount of decision variables
would significantly increase due to the high number of vertices in the polytope (i.e., λ may
have hundreds of elements for each optimization knot) leading to computation times that do
not meet the requirements for online planning. Thus we tackled this problem by computing
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Table 4-2: Trajectory optimization variables of the FWP V-description

3 non-coplanar contacts 4 non-coplanar contacts
timesteps 10 10

FWP vertices 436 1118
variables Γ 41 41
constraints 24 24
time [ms] 75 85

the set of λ through a simple Moore-Penrose pseudo-inversion: λ[k] = V#wGI [k]. In this
way the decision variables will be only the states Γ of the system and the number of vertices
will influence the size of the TO problem only marginally (see Table 4-2). We noticed that
adding a bias term in the nullspace of V to “drive” the solution λ[k] toward the FWP centroid
λ0 ∈ Rnv was giving satisfactory results:

λ[k] = V#wGI [k] + NV λ0, λ ∈ Rnv (4-41)

where NV ∈ Rnv×nv is the null-space projector associated to V. Indeed, if we set λ0 =
[1/nv, · · · , 1/nv] as the geometric center of the FWP, the constraints ‖λ0‖1 = 1, λ0i > 0
are satisfied by construction. Thanks to the one-to-one correspondence between the gravito-
inertial wrench and the weights λ, penalizing the deviation of λ ∈ Rnv from λ0 is equivalent
to maximizing the feasibility factor. Therefore, we formulate the running cost computation
as:

L(c[k], ḣ[k],V) = ‖λ[k]− λ0‖2 (4-42)

We can therefore finally formulate the trajectory optimization problem as:

min
Γ

N∑
k=1
L(c[k], ḣ[k],V)

subject to: ċx[k + 1] = (cx[k + 1]− cx[k])/h

ċy[k + 1] = (cy[k + 1]− cy[k])/h

ċx[0] = ċy[0] = ċx[N ] = ċy[N ] = 0

(4-43)

4-5-1 Computational Issues and Approximations

The TO strategy proposed in this Chapter consists of two main steps:

a) evaluation of the FWP V-description;

b) solution of the optimization problem in Eq. 4-43
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Despite the remarkable computational speed-up obtained by the usage of the V-description
(see Table 4-3) and of the Politopix library [124], the evaluation of the FWP, point (a), still
represents the most time-consuming step of this pipeline (about 150ms needed for a triple-
stance configuration). The subsequent step (b), i.e., the solution of the TO problem for a
given FWP, requires instead about 75− 85ms for 10 nodes trajectory.

Table 4-3: FWP’s V- and H-description computation time with Politopix.

2 contact points 3 contact points 4 contact points
V-description 0.03s 0.15s 0.49s
H-description 0.04s 1.03s 30.21s

Ideally we should recompute step a and step b iteratively, concurrently optimizing the vertices
of the FWP and the trajectory inside it. We decided instead to compute the FWP only once
per step, assuming that its vertices do not change during the execution of each phase, as
explained in the following paragraph.
We first analyze the influence on the estimated maximum and minimum contact force when
the Jacobian matrix is approximated to be constant along a body motion of the HyQ robot.
In Fig. 4-10 we can see the contact force boundaries when a foot spans its workspace (the
foot covers all the x and y positions on a plane located at z = −0.6m). The green surfaces
represent the real boundaries of the vertical contact force considering the correct leg Jacobian
and for each considered foot position. The red surfaces show instead the same force boundaries
when a constant Jacobian is evaluated. We can see that in a neighborhood of the default foot
configuration([0.3, 0.2,−0.6]m with respect to the base frame of the robot) the approximation
is accurate and becomes rough in proximity of the workspace boundaries. We chose to use a
constant Jacobian matrix corresponding to an average joint configuration qd computed from
the heuristic planner. In this way the Jacobian remains constant and we remove the AWP’s
dependency from the joints position.
As a further simplification we assume a quasi-static motion as in Eq. 4-40. These assumptions
allow us to compute the FWP only once at each stance change. Note that all the wrenches
are expressed in the fixed frame.

4-6 Experimental Results

In this section we present simulation results and real experiments with the HyQ robot. The
first two simulations validate the feasibility factor formulation based on the V-description of
the FWP. After that we highlight the differences between our proposed feasibility metric and
a state-of-the-art stability metric. Finally we present a few examples of the behaviors we can
obtain with the TO presented in Section 4-5.
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(a) fx contact force limits (b) fy contact force limits

(c) fz contact force limits

Figure 4-10: Contact force limits on the left-front (LF) leg of HyQ as a function of the foot
position computed with real torque limits (green) and with Jacobian approximation (red).

4-6-1 Validation of the FWP Feasibility Factor

In a first test, we consider three different motion planners: the baseline heuristic planner, a
CWC planner (that incorporates only frictional constraints) and our FWP planner. We have
the robot crawling where the CoM trajectory is planned by the three different methods. In all
cases, we stop the robot during a triple-stance phase (being more critical for robustness than
four-stance phases). The final position of the CoM will be different for each of the planners.
We then make the robot displace its CoM laterally with an increasing offset δy = ε0.5 m
(ε ∈ R increases linearly from 0 to 1). The objective is to obtain a gradual unloading of the
lateral legs and therefore violate the unilaterality constraints. Figure 4-9 (center) shows the
evolution of the displacement δy and of the normal component of the contact force Fz at the
right-front (RF ) leg. As expected the plot shows that for all the cases s drops to zero when
the leg RLF becomes unloaded (Fz = 0).
In the second test the robot is again stopped during a walk in a three-legs stance configuration.
This time a vertical disturbance force was applied at the origin of the base link origin (i.e., the
geometric center of the torso). The force is vertical and pointing downwards with increasing
magnitude dz = −ε1000 N where ε ∈ R is linearly increasing from 0 to 1. The joint torques
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will increase because of the action of this force, eventually making one (or more) of them
hit the limits. Since the test is performed in a static configuration and the disturbance force
is always vertical, the CoP of the system will not change, being the robot always statically
stable. Fig. 4-9 (right) shows a plot of the magnitude of the vertical pushing force dz together
with the knee joint torque of the LF leg and the feasibility factors s in the three cases. We
can see that, in the case of the static configuration found with the FWP planner, the torque
limit is reached for a higher amplitude of the disturbing force (about −1100N compared
to −900N), showing that this is more robust against external disturbance forces than the
configurations selected by the heuristic and by the CWC planners. We can see that in all the
cases the feasibility factor s goes to zero when a torque limit is violated.

4-6-2 CWC Margin vs. FWP Feasibility Factor Comparison

The last test highlights the main differences between the feasibility factor s and the traditional
stability measures. As state-of-the-art stability metric we consider the CWC-margin, which
is obtained by applying Eq. 4-38 on the V-description of the CWC, rather than the FWP
as explained in Section 4-4-2. Fig. 4-11 (above) shows the results when a crawl gait is
evaluated using this method. The red line represents the value of the CWC-margin during
the triple-stance phase of a crawling gait. The dashed blue line represents the same walk,
evaluated again with the CWC-margin, in the case that an external load of 20kg is applied
on the CoM of the robot during its walk. The factor referring to the four-legs stance is
not directly comparable to the triple-stance phase because the vertices of the FWP have a
different scaling. For this reason we only show the values referring to the triple stance. We can
see that the same two trials, with and without external load, provide a completely different
result if evaluated with the FWP-factor (Fig. 4-11 bottom): the blue-dashed line shows that
the feasibility is lower in the case with external load. This is consistent with reality as in,
when the load increases, even if the stability margin might improve, the risk of hitting the
torque limits gets higher.

4-6-3 Craw Simulations

As shown in the accompanying video3, we report a few simulation and hardware experiments
of HyQ performing a crawling gait. At first we see that the heuristic crawl easily hits the
torque limits while crawling on a flat ground while carrying an external load of 20kg (about
25% of the robot total weight) placed on its CoM. We can then see that the FWP planner, as
explained in Section 4-5, finds a new duration ∆tbm of the base motion phase and a new CoM
trajectory that avoids hitting the torque limits at all times, while maintaining the desired
linear speed (e.g., slower motion that results in smaller accelerations).

3https://youtu.be/vUx5b5kfRfE

Romeo Orsolino Doctor of Philosophy Thesis

https://youtu.be/vUx5b5kfRfE


4-7 Summary 81

0 2 4 6 8 10 12
time [s]

0
0.1
0.2

FWP margin
0 2 4 6 8 10 12

0
0.1
0.2

CWC margin

with load
without load

0 50 100 150 200
-10

0

10Figure 4-11: Evaluation of the heuristic crawl gait (with and without 20kg load) with the CWC
margin (top) and with the FWP factor (bottom).

Final simulations show the capability of the planner to optimize feasible trajectories when the
robot has a hindered joint (i.e. when a specific joint can only realize a significantly smaller
torque than the other joints), or when we limit the normal force that a specific leg can realize
on the ground.
The video also shows hardware experiments of HyQ crawling on a rough terrain composed of
two parallel ramps with different slopes and heights. In this scenario only considering the fric-
tion cones for stability would lead the robot to place its CoM in such a way to homogeneously
distribute the weight over all the stance legs. This would, however, neglect the different leg
retraction of the left legs compared to the right legs and their consequent different torque
amplification capabilities. The FWP presented in this Chapter, instead, tends to shift to
CoM towards the lower ramp in such a way to add more load on those legs that are in a most
favorable configuration.

4-7 Summary

The complexity of a motion increases with the complexity of the terrain to be traversed.
Moreover, there is a need for online motion replanning to avoid error accumulation. For these
reasons, in this Chapter, we presented the concepts of AWP and FWP, two 6-dimensional
spaces able to describe the set of feasible wrenches that a robot can exert without violating
its actuation capabilities. Besides that, we also proposed a method to efficiently compute
the V-description of these two wrench sets. We then adapted a feasibility factor, originally
proposed for grasping [74], to the V-description of the FWP in order to study the locomotion
stability and the actuation-consistency of a given motion plan. Finally we showed how this
factor can be used in a CoM trajectory optimization not only for feasibility evaluation but
also for motion planning.
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Thanks to the efficiency of the vertex-based approach we are able to perform online TO where
the robot plans during each swing the trajectory for the next base motion phase in a statically
stable crawl [11]. Our approach does not take any assumption on the environment and it is
therefore suitable for complex terrain scenarios.

The following list contains the main concepts and definitions that have been proposed in this
Chapter:

1. the force polytopes Ai represent the result of the mapping of the legs’ admissible joint
torques to the set of admissible contact forces/wrenches at the end-effectors of a floating-
base tree-structured robot. These quantities can be used to evaluate the capability of
each individual limb to exert a force at its foot/hand in a specific configuration or to
carry the robot’s body weight (e.g., a stretched leg may correspond to force polytope
of reduced value and it can be therefore a good indicator of the necessity of taking a
new step [142]);

2. if not intersected with the friction cones, the force polytopes Ai also consider the pos-
sibility of exerting negative normal contact forces and, therefore, they can also be em-
ployed for those robotics applications where one or more end-effectors are capable of
grasping and/or pulling the ground;

3. unlike the friction cones Ci, the force polytopes Ai are configuration dependent and,
therefore, they need to be recomputed after every motion of the robot (even if no stance
change occurs);

4. the Feasible Wrench Polytope (FWP) is a 6-dimensional set that can be efficiently
obtained as the Minkowsky sum of all the admissible wrench sets B̂i of every contact
point i = 1, . . . nc where nc is the number of contact points: FWP = ⊕nc

i=1B̂i. The
bounded set B̂i is obtained from the intersection of the friction cones Ci with the force
polytopes Ai;

5. the FWP-based feasibility criterion states that if the gravito-inertial wrench wGI ∈ R6

lies within the limits of the FWP, the system is then dynamically stable and there exists
then at least one set of joint torques that respects the system’s actuation limits. This
criterion is not limited to any specific terrain morphology and it can be employed for
the analysis and the synthesis of both dynamic and static motions;

6. we formulated an online motion planner based on the approximating assumption that
the robot’s configuration, and thus the FWP limits, do not change significantly between
two following steps of a quadrupedal walk. The motion planner is able to plan both
feasible (i.e., statically stable and actuation consistent) CoM trajectories and to opti-
mize the duration of a locomotion phase in such a way to ensure that the robot’s state
always lies within the limits given by the halfspaces of the FWP.
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Possible future works related to the FWP and to the wrench-based feasibility analysis my
focus on the removal of the approximations mentioned in Section 4-5-1 and on the integration
of planned and reactive locomotion behaviors [143].
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Chapter 5

2D Actuation Constraints Projections

5-1 Introduction

The Actuation Wrench Polytope (AWP) and the Feasible Wrench Polytope (FWP) that have
been described in the previous Chapter, can be considered as an extension of the Contact
Wrench Cone (CWC) to the case where joint-torque limits affect the locomotion capabilities
of legged robots on complex environments. The proposed approach is valid for arbitrary con-
tacts (not limited to flat terrains) and to dynamic motions with non-zero linear and angular
centroidal accelerations.
The computation time of six-dimensional bounded polytopes (AWP and FWP), however,
increases considerably with respect to the case where only six-dimensional convex cones are
involved (CWC). In the case of a quadruped robot, for example, the feasibility factor with
respect to the FWP constraints can only be computed at about 10Hz in a triple stance phase
and about 3Hz during a quadruple-support phase (see Tab. 4-1). These computation times,
as much as the other performances reported in the continuation of this Chapter, have been
achieved on a Intel(R) Core(TM) i5-4440 CPU @ 3.10GHz processor with 4 cores.
Online motion planning in Chapter 4 could only be achieved under the assumption that the
robot configuration does not significantly differ from the configuration used to compute the
FWP limits (see for example the approximations assumed in Section 4-5-1). These compu-
tational restrictions imposed by modern processors jeopardize the effectiveness of the FWP
constraints.
For the above reasons, the approach presented in this Chapter introduces the concept of actua-
tion region and feasible region as two-dimensional counterparts of the AWP and FWP respec-
tively. These regions are the projections of the AWP and FWP in the Center of Mass (CoM)
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space, obtained by assuming that only gravity acts on the robot. This quasi-static assumption
enables the direct mapping from joint-torques to CoM space by means of a modified version
of the Iterative Projection (IP) algorithm, originally proposed by Bretl et al. [57]. This allows
a considerable improvement of the computational performances of our strategy, allowing us
to check the feasibility margin with respect to friction cones and joint-torque constraints at
a frequency of, at least, 66Hz for a triple support phase and 50Hz for a four-support phase
of a quadruped. As later explained in this Chapter, this also enables the online optimization
of actuation-aware foothold positions in rough terrains, besides the online CoM trajectory
planning.

Besides that, the actuation and feasible regions, unlike the AWP and FWP, can be easily
represented in 2D. This allows us to give a clear and intuitive answer to legit questions like:
how does the step length change with the increase of the robot’s mass? And also: which is
the height of the highest step that a robot can step on given its maximal joint torque/force
capabilities?

Contributions:
In this Chapter I attempt to give an answer to the above important questions in the following
way:

1. I will introduce a modified version of the IP algorithm, adapted to consider the joint-
torque limits of legged robots in the form of force/wrench polytope constraints;

2. I will present the concept of local and global feasible regions and I will discuss their
properties. These 2D areas provide an intuitive yet powerful understanding of the
relation between locomotion capabilities and actuation limits;

3. I will apply the feasible region framework to a motion planning algorithm for legged
robots, able to optimize CoM trajectories and foothold location online on arbitrary
terrains for predefined step sequences and timings.

The two core building blocks of the work developed in this Chapter are the force/wrench
polytopes, already presented in Section 4-2-1, and the IP algorithm, which I mentioned in
Section 2-2-1 and which I will briefly describe in the next Section.
Notice that the Figs. 5-5, 5-8 and 5-10 and the Voronoi tassellation-based strategy (is Section
5-3-3) presented in this Chapter have been created by my collaborator Dr. Stéphane Caron1,
who produced them in perspective of a future joint publication, and they have been included
in this dissertation with his permission.

1LIRMM, CNRS-University of Montpellier, email: stephane.caron@lirmm.fr
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5-2 Related Works

The Iterative Projection (IP) algorithm is a method introduced by Bretl et al. [57] for the
computation of stable support regions for articulated robots having multiple contacts with the
environment in arbitrary locations, having arbitrary surface normals and friction coefficients.
The IP belongs to a family of cutting-plane computational methods that allow to approximate
a target convex set Y up to a predefined tolerance value. The tuning of this tolerance allows
to conveniently adjust the computational performances of the algorithm according to the
requirements of the specific application: it enables a rough but fast set reconstruction for
high tolerance values and also, on the opposite, a precise set reconstruction with longer solve
times when the tolerance value is low. Bretl et al. have applied this strategy to the field of
legged locomotion with the goal to reconstruct the 2D friction-consistent support region Yf
(see Section 2-2-1 for a definition of support region). In [57], the support region is defined
as: the horizontal cross section the convex cylinder that represents the set of CoM positions
at which contact forces exist that compensate for gravity without causing slip (for given foot
placements with associated friction models). In the remainder of this Chapter the support
region will be referred to under the name of friction region, in order to reduce the confusion
with other similar regions that will be defined in the following Sections.

Algorithm 1 reports the procedure presented in [57]; you can see that the algorithm consists
of recursively solving a Second Order Cone Program (SOCP) that maximizes the horizontal
position of the CoM cxy ∈ R2 along the direction defined by the unit vector ai ∈ R2 (i being
in this case the iteration index) while satisfying the friction constraints.

Input: y,p1, . . .pnc ,n1, . . .nnc , µ1, . . . , µnc ;
Result: friction region Yf
initialization: Youter and Yinner;
while area(Youter)− area(Yinner) > ε do

I) compute the edges of Yinner;
II) pick the edge cutting off the largest fraction of Youter;
III) solve the SOCP:

max
cxy ,f

aTi cxy

such that:

(III.a) A1f + A2cxy = t

(III.b) ‖Bf‖2 ≤ uT f

IV) update the outer approximation Youter;
V) update the inner approximation Yinner;

end
Algorithm 1: Bretl’s IP algorithm
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The algorithm considers the robot’s CoM position c, mass m, set of nc point contacts
p1, . . .pnc with corresponding surface normals n1, . . .nnc and friction coefficients µ1, . . . , µnc .
The constraint (III.a) enforces the static equilibrium of the forces and moments acting on
the robot due to gravity g and contact forces f = [fT1 , . . . , fTnc

]T ∈ R3nc . Eq. (III.b) ensures
that the friction cones constraint is satisfied. P ∈ R2×3 is a selection matrix that selects the
x, y components of the CoM. The matrix A1 represents the grasp matrix of the set of point
contacts2, A2 computes the x, y angular components τx and τy of the wrench generated by
the action of gravity on the CoM c of the robot expressed with respect to a fixed frame. The
matrix B projects the contact forces fi into the local contact frame and u ∈ R3nc considers
the limits of the friction cones in the local contact frames:

A1 =
[

13 . . . 13

[p1]× . . . [pnc ]×

]
∈ R6×3nc , A2 =

[
0

−mg×PT

]
∈ R6×2, P =

[
1 0 0
0 1 0

]

t =
[
−mg

0

]
, u =


µ1n1
...

µncnnc

 and B = diag(13 − n1nT1 , . . . ,13 − nncnTnc
)

(5-1)
Once defined the above quantities, the friction region Yf was defined by Bretl et al. [57] as
the set of CoM coordinates cxy ∈ R2 orthogonal to gravity for which there exists a set of
contact forces that respects both static equilibrium and friction constraints:

Yf =
{
cxy ∈ R2 | ∃f ∈ R3nc s. t.(cxy, f) ∈ C

}
(5-2)

where:
C =

{
f ∈ R3nc , cxy ∈ R2 | A1f + A2cxy = t, ‖Bf‖2 ≤ uT f

}
(5-3)

Figure 5-1: Single step of Bretl’s iterative projection algorithm

Fig. 5-1 shows the process corresponding to one iteration of the IP algorithm reported in
Alg. 1. As it can be seen in step III, the IP does not only maximize the horizontal CoM
projection cxy along the direction ai ∈ R2, but it also finds a feasible set of contact forces f

2[·]× represents the skew-symmetric operator associated to the cross product.
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that respects static equilibrium and friction cone constraints.
Alg. 1 can also be regarded as a projection of the feasible set C onto a lower dimensional
region whose boundary represent the location of the CoM for which the τx, τy components of
the gravity wrench can be equilibrated by the contact forces for a given set of contact points.
Exploiting the assumption that the only external force acting on the CoM is gravity we then
get a one-to-one mapping between the torque components and the corresponding CoM (x, y)
coordinates:

cx = τy
mg

, cy = − τx
mg

(5-4)

The friction region, as defined in Eq. 5-2, is a 2D convex set but it is not, in general, a linear
set (i.e., it is not a polygon). The inner and outer approximations Yinner and Youter used to
estimate Yf are, however, always 2D polygons by construction. For this reason (and for the
additional motivations given in Section 2-2-1) I will therefore refer to Yf in the rest of this
dissertation with the term friction region rather than friction polygon.

Del Prete et al. [120] proposed a Revisited Incremental Projection (IPR) algorithm to test
static equilibrium which is shown to be faster than the original IP formulation and than other
possible techniques such as the Polytope Projection (PP) and the Linear Programming (LP).
However the IPR approach is only suitable for convex cones and, therefore, does not fit well
with the projection of bounded polytopes that we face in the next Section.

In the next Section we will see how I modified Alg. 1 in order to obtain a 2D set that does not
only respect the static equilibrium and the friction cone constraints, but it is also consistent
with the actuation capabilities of the system.
A partial list of the main symbols employed in the remainder of this Chapter and throughout
this dissertation is contained in the Notation section.

5-3 The 2D Actuation and Feasible Regions

Algorithm 1 can be extended in a straightforward manner to include also the static force/wrench
polytope constraint that I already discussed in Eq. 4-16. The construction and analysis of
the resulting 2D polygons will be the topic of the following Section.

5-3-1 The Local Actuation and Feasible Regions

In this Section I propose a slight variations of Alg. 1 to include also the static force polytope
Ai of every individual robot’s foot/end-effector in contact with the ground/environment. The
resulting procedure can be found in Alg. 2 [144]. An open-source C++/Python implementa-
tion of the proposed algorithm can be found in the Jet-Leg3 package [145].

3https://github.com/orsoromeo/jet-leg
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Input: y,p1, . . .pnc ,n1, . . .nnc , µ1, . . . , µnc ,g1, . . .gnc ,J1, . . .Jnc , τ
lim
1 , . . . τ limnc

;
Result: local feasible region Yfa
initialization: Youter and Yinner;
while area(Youter)− area(Yinner) > ε do

I) compute the edges of Yinner;
II) pick the edge cutting off the largest fraction of Youter;
III) solve the SOCP:

max
cxy ,f

aTi cxy

such that :

(III.a) A1f + A2cxy = t

(III.b) ‖Bf‖2 ≤ uT f

(III.c) Cf ≤ d

IV) update the outer approximation Youter;
V) update the inner approximation Yinner;

end
Algorithm 2: Actuation and Friction consistent IP algorithm

Figure 5-2: Representation of the force
polytopes of the HyQ robot in a four-stance
configuration (nc = 4).

For compactness I report Eq. 4-16, representing the
definition of force/wrench polytopes Ai of the i − th
limb in contact with the environment:

Ai =
{
fi ∈ Rm | Cifi = di, −τ limi ≤ τi ≤ τ limi

}
(5-5)

where:

Ci = JTi ∈ Rnl×m and di = g(qi)−τi ∈ Rnl (5-6)

where nl is the number of actuated joints of the i− th
limb. Differently from the original IP algorithm, I
consider in this case the possibility of contact torques
being applied at the end-effectors of the robot in con-
tact with the environment; as a consequence I define
each individual contact wrench fi ∈ Rm where m = 3

if the considered end-effector is perturbed by a pure force and m = 6 if, instead, also a contact
torque component is given.
Considering the the joint-space torque variable τi Eq. 5-6 only depends on its minimum
and maximum values τ limi , we can then further re-write Eq. 5-5 to explicitly highlight its
dependency from τ limi :

Ai =
{
fi ∈ Rm | Cifi ≤ dlimi

}
(5-7)
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(a) (b)

Figure 5-3: Classical friction region (light gray) and feasible region (dark gray) in four-stance
(a) and triple-stance (b) conditions.

where:
dlimi = g(qi)− τ limi (5-8)

Eq. 5-7 thus represents a compact notation for the static force polytope initially defined
in Eq. 4-16. I will now exploit this notation to introduce the matrix C ∈ Rd×(m·nc) and
the vector d, result of the concatenation of all the matrices Ci and vectors dlimi of all the
individual limbs in contact with the environment:

C =diag(C1, . . . ,Cnc) ∈ Rd×(m·nc)

d =


dlim1
...

dlimnc

 ∈ Rd
(5-9)

where d =
∑nc
i=1 nl,i is the sum of the number of joints of all the limbs in contact with the

environment (e.g., d = n if all the limbs of the robot are in contact). C and d can now be used
to redefine the set of actuation-consistent forces/wrenches A that satisfy all the individual
force polytopes Ai for k = 1, . . . , nc:

A =
{
f ∈ Rmnc , cxy ∈ R2 | Cf ≤ d

}
(5-10)

In analogy with Eq. 5-2, we can define a new set of actuation-consistent CoM positions called
local actuation region:

Ya =
{
cxy ∈ R2 | ∃f ∈ Rmnc s. t.(cxy, f) ∈ A

}
(5-11)

As a further observation we notice that we are interested in computing the set of CoM
positions Yfa that simultaneously satisfies both the friction and the actuation constraints
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(see Fig. 5-3). This can be obtained by considering the intersection of C and A:

C ∩ A =
{
f ∈ Rmnc , cxy ∈ R2 | A1f + A2cxy = t, ‖Bf‖2 ≤ uT f , Cf ≤ d

}
(5-12)

Based on Eq. 5-12, the friction- and actuation-consistent region Yfa, called local feasible
region, can be defined as:

Yfa =
{
cxy ∈ R2 | ∃f ∈ Rmnc s. t.(cxy, f) ∈ C ∩ A

}
(5-13)

In analogy with Alg. 1, Alg. 2 explains how Yfa can be computed efficiently.

Simultaneously imposing the inequality constraints (III.b) and (III.c) in Alg. 2 corresponds to
performing an intersection of the polytopes Ai with the friction cone Ci of the corresponding
contact point. This yields the set of all the contact forces that simultaneously respect both
the friction cone constraints and the joint actuation limits of the j− th limb (see for example
Fig. 4-3). This corresponds to the bounded friction cone Bi that we defined in Section 4-3-3.
Alg. 2, in practice, is equivalent to Alg. 1 with the only difference being the constraint (III.c)
relative to the actuation limits.
Another variant of the same IP algorithm can be formulated to compute the actuation region
Ya that only considers actuation constraints and no friction constraints. This can be obtained
by simply removing the constraint (III.b) from the SOCP that is solved at the step III of Alg.
2. In this case, being (III.b) the only quadratic constraint, the maximization problem will
then turn into a linear program (LP).
Intermediate cases exist where some end-effector present unilateral contacts and other limbs
present instead bilateral contacts (e.g., when a robot is climbing a ladder pushing with its
feet and pulling with his hands). Such conditions can be captured by the presented IP
modification by enforcing only the force polytope constraints on the bilateral contact points
and by enforcing both friction pyramids and force polytopes on the unilateral contacts.

The force/wrench polytope Ai, unlike the friction cones Ci, is a configuration-dependent
quantity and, as a consequence, its vertices will change whenever the robot changes its con-
figuration. In order to highlight this property, we refer to the resulting friction- and actuation-
consistent feasible region Yfa with the name of local feasible region. The term local points out
the fact that the feasible region Yfa can be considered to be accurate only in a neighborhood
of the current robot configuration. The distance between the current CoM projection cxy
and the edges of Yfa can be considered as a combined measure of the local or instantaneous
robustness of the robot’s state with respect to the contacts’ stability and joint-space torque
limits.
The friction cones (and the friction region Yf ) are only dependent on the contacts’ configura-
tion and can thus be recomputed at every stance change. This is a very convenient property to
embed the contacts’ stability in a motion planning formulation. The force/wrench polytopes
(and thus the feasible region Yfa), instead, because of their local validity must be recomputed
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at every change of configuration and thus make the motion planning formulation harder.
However, their local validity is also the key element of the local actuation polytopes that, if
properly exploited, can provide an insightful view on the relationship between robot config-
uration and maximal exerted force at the end-effectors. In the remainder of this Chapter we
will drop the adjective local for the sake of compactness, however the actuation polytopes Ai
should always be regarded as instantaneous configuration dependent quantities.

Connecting the Feasible Regions and the Feasible Polytopes
In the same way like the friction region Yf can be seen as a particular case of the CWC
criterion with only gravity acting on the CoM of the robot, in the same way also the local
actuation region Ya can be seen as a specific case of the AWP and the feasible region Yfa can
be seen as a specific case of the FWP (previously presented in Section 4) as shown in Tab.
5-1.

Table 5-1: Analogies between 2D feasible regions and 6D feasible polytopes

constraint 2D CoM space 6D centroidal validity
wrench

friction friction region Yf CWC global
joint-torques actuation region Ya AWP local

friction and torques feasible region Yfa FWP local
joint-torques actuation region Ga - global

friction and torques feasible region Gfa - global
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Figure 5-4: Computation time for IP algorithm with only linearized friction cone constraints
(red), only force polytope constraints (green) and both friction and actuation constraints (blue).
These statics were collected on a 4-cores Intel(R) Core(TM) i5-4440 CPU @ 3.10GHz processor.

This can be demonstrated by slicing, for example, the six-dimensional AWP (FWP) in corre-
spondence of the planes: fx = 0, fy = 0, fz = mg and τz = 0. In this way only two Degrees of
Freedom (DoFs) are left which correspond to the τx and τy coordinates of the wrench space.
The two-dimensional region that results from this slicing procedure can then be mapped into
a set of feasible CoM coordinates cxy that corresponds indeed to the actuation consistent
region Ya (Yfa).
Computing the AWP or the FWP, however, can be computationally demanding because of
the high dimensionality and large amount of halfspaces and vertices. This is what motivated
me to propose a variant of the IP algorithm that allows to directly map joint-torques con-
straints into 2D CoM limits. The computational improvements achieved by this choice are
presented in the following Section.

Local Regions Computation Time
The usage of the IP algorithm implies a significant speed up for the computation of the
actuation region reaching average computation times in the order of milliseconds (see Fig.

Romeo Orsolino Doctor of Philosophy Thesis



5-3 The 2D Actuation and Feasible Regions 95

(a)
(b)

Figure 5-5: Local feasible region (blue) and friction region (green) for the HRP-4 humanoid
robot in a configuration with non-coplanar contacts.

5-4).

The solve time of the IP algorithm depends on the number of inequality constraints embed-
ded in it (only friction constraints, only actuation constraints, or both). The most favorable
scenario is when only friction cones are considered (red in Fig. 5-4): in the case of linearized
friction cones with four facets per pyramid, the IP will present 4nc inequalities. The least con-
venient scenario is instead when both friction pyramids and force/wrench polytope constraints
are considered (blue in Fig. 5-4), in this case the IP will include (4 + 2nl)nc inequalities (as-
suming that all the limbs in contact with the ground have same number of DoFs nl and that
the friction cones are linearized with 4 halfspaces). In the case of the Hydraulically actuated
Quadruped (HyQ) quadruped this will result in 10 inequalities per contact foot; in the case of
a humanoid robot with 6 DoFs per leg, instead, this will result in 14 inequalities per contact
foot. Figure 5-5, for example, shows the friction region Yf (green) and the feasible region Yfa
in the case of the HRP-4 robot standing still in a configuration with non-coplanar contacts.
The last row of Fig. 5-4 shows that, even in such inconvenient condition where all contacts
are subject to both friction and actuation constraints, the solve time is below 20ms in a
four-stance configuration and below 15ms in a triple-stance configuration in 99.5% of the
computations (blue histogram). This allows the efficient computation of the local feasible
region at a frequency of, at least, 50Hz in a four stance configuration and 66Hz in a triple
stance configuration of a quadruped robot. These frequencies could be further increased by
reducing the tolerance factor of the IP algorithm.

Modern legged robots are equipped with powerful actuators that are able to sustain the robots
own weight even on one single leg in a predefined convenient configuration. Even for such
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powerful robots, the feasible region can represent a useful tool to intuitively visualize the
payload dependency on the specific gait or, finally, the maximal static displacement of the
CoM in presence of limited torques and/or damaged limb.

Friction- and Actuation-Consistent Whole-Body Controllers
Having the CoM inside the feasible region Yfa ensures the existence of a feasible set of contact
forces that satisfy the force polytope constraints and the friction cone constraints. We still
do not know, however, the exact value of the forces corresponding to this feasible solution.
From a control point of view, it is therefore of paramount importance for this approach that a
whole-body controller is developed that is capable of determining the sought feasible solution.
If the CoM projection lies instead outside of Yfa then we can conclude that either the friction
constraints or the joint-torques limits (or both) will be violated for that specific state of the
robot.
The hereby proposed feasible region Yfa still plays a role in the field of motion planning for
the benchmarking of the performances of whole-body controllers (to make sure that they can
still find a feasible solution when the CoM projection cxy lies inside Yfa or on the edge of
Yfa).
Besides this, the Yfa does not suffer from limitations to specific robot morphologies or specific
terrains (e.g., flat terrains). As a consequence the Yfa can be employed for motion planning of
legged robots on rough and complex terrains, where classical simplified models fail because the
feasibility constraints, such as joint torque limits, affect more and more the robot’s navigation
capabilities.
As a showcase for humanoid robots, an example of local feasible region Yfa for the HRP-4
robot is shown next.

5-3-2 Comparison of Local Feasible Regions

Fig. 5-6 reports various tests of computation of feasible 2D areas for different loads applied
on the CoM of the robot. This is analogous to computing the feasible regions for different
percentages of the torque limits while keeping the load on the robot fixed. The blue dashed
lines represent the classical friction region Yf as defined by Bretl et al. [57].
Figs. 5-6a and 5-6c depict the feasible regions Yfa for the HyQ robot with four and three
coplanar stance feet. Figs. 5-6b and 5-6d, instead, depict the actuation regions Ya for the HyQ
robot in the same configurations with four and three coplanar stance feet. Such actuation
consistent areas Ya alone are not directly applicable in the field of legged locomotion where
robots typically make and break contacts using their feet and have therefore no possibility to
grasp the terrain. Feasible regions Yfa should be used instead since they include the friction
constraints that also encode the unilaterality constraint. Actuation-consistent regions Ya
however, can be useful in other fields of robotics such as manipulation and or whenever a
robot has bilateral contacts with the ground as in the case of climbing robots with magnetic
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Figure 5-6: Relation between the load acting on the CoM of the robot (in N) and the shape of
the instantaneous feasible region. We can see that the heavier the load, the smaller the area of
the feasible regions. The black points represent the stance feet positions of the HyQ quadruped
during a four and triple support phases; the dashed blue lines represent the feasible region obtained
by consideration of friction constraints only.

grippers [146] or in the case of heavy-duty walking machines with predefined footstep locations
such as the robots of the TITAN series [60] (e.g., see Fig. 2-9b). As visible in Figs. 5-6b and
5-6d the robot’s CoM might lean outside of the classical friction region Yf (dashed blue line)
depending on the magnitude of the load acting on it. This is because the actuation region Ya
does not consider the friction constraints and, as a consequence, if considered alone, it assumes
that also negative normal contact forces are admissible (i.e., pulling from the ground). Ya
is therefore a valuable tool for all those robotic applications that involve the capability of
grasping the ground with one or more of their limbs (e.g., robotics hands, magnetic grippers,
etc.).
As a final consideration, comparing the figures related to the same number of stance feet
(Fig. 5-6d compared with 5-6c and Fig. 5-6b compared with 5-6a) you can see that the
feasible region Yfa cannot be obtained by simple intersection of the friction region Yf and
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the actuation region Ya. Although this approximation might be accurate under specific
conditions, in general the intersection and projection operators do not commute [58]. Let
us consider C to be the set of contact forces and CoM positions cxy that respect the static
equilibrium and the friction constraints (see Eq. 5-3); let us then also consider A defined as
the set of contact forces and CoM horizontal positions cxy that respect the static equilibrium,
the force polytopes and the friction cones constraints (see Eq. 5-7). We therefore define the
friction region [57] as:

Yf = IP (C), (5-14)

the local actuation region as:
Ya = IP (A) (5-15)

and the (actuation- and friction-consistent) local feasible region as:

Yfa = IP (C ∩ A) (5-16)

where IP is the Iterative Projection operator. The non-commutativity of projections and
intersection can be stated as:

Yfa 6= Yf ∩ Ya (5-17)

and, in particular, the following inclusion always holds:

Yfa ⊆ Yf ∩ Ya (5-18)

Yfa is therefore more conservative than the intersection of Yf and Ya. Intuitively, Eq. 5-18
might be explained by considering that there may exist CoM positions that, in same the time:

1. provide feasible force/wrench solutions if the friction cones or force polytopes constraints
are considered individually;

2. provide unfeasible force/wrench solutions if the friction cones or force polytopes con-
straints are considered simultaneously;

However, the opposite in not possible and consequently Yfa has to lie inside the intersection
of Yf and Ya as stated in Eq. 5-18.

5-3-3 The Global Actuation and Feasible Regions

Fig. 5-7 reports the results of a few tests where I computed the local actuation region for
different CoM positions (along the same segment from (0,−0.3) to (0,+0.3)) and for the same
set of contact points. As previously anticipated, the local actuation regions Yfa change as a
function of the robot configurations while the friction region Yf (dashed blue line) is constant
as it only depends on the stance locations.

Romeo Orsolino Doctor of Philosophy Thesis



5-3 The 2D Actuation and Feasible Regions 99

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
x [m]

-0.2

-0.1

0.0

0.1

0.2

0.3

y
[m

]

-0.3 cm
-0.2 cm
-0.1 cm
0.0 cm
0.1 cm
0.2 cm
0.3 cm
only friction
feet
CoM inside local region
CoM outside local region

Figure 5-7: Local actuation areas for the same footholds position and for different CoM positions
along the same segment. The triangular markers represent those CoM positions that do not belong
to their corresponding local feasible region. The squared markers, instead, represent the tested
CoM positions that are inside their corresponding local feasible region.

By inspection of the resulting actuation areas Ya you can see that some of the CoM positions
cxy used for their computation do not lie within their corresponding local actuation region;
such points are marked with squared markers. This is a degenerate condition in which the set
of feasible forces/wrenches (constrained by the force/wrench polytopes and thus, ultimately,
depending on the limb Jacobians Ji and on the torque limits τ limi ) are not able to withstand
the weight of the robot lumped into the specified value of cxy. Those cases are therefore to
be considered unfeasible, even if the area of the resulting local actuation region is not null.
Such degenerate areas might be useful in the very unlikely cases where the CoM position cxy
changes without changing the robot configuration (e.g., when an external asymmetric static
load is added onto the trunk of the robot).
Those points that, instead, do belong to their respective local actuation region are instead
marked with triangular markers.
By repeating the test shown in Fig. 5-7 along multiple directions and with multiple cxy
positions (and, consequently different robot configurations) one can notice that the set of
feasible CoM positions results in a convex set that we name global actuation region Ga:

Definition: we define the static global actuation region Ga as the set of all CoM coordinates
cxy ∈ R2, orthogonal to the direction of gravity, where the robot is able to withstand its own
weight, considering its own kinematics and torque limits.

The definition above does not include the unilaterality of the contact forces and the friction
constraints. We thus define a second global region that also considers such features:
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(a) Grid sampling and rectangular cells parti-
tioning.

(b) Random uniform sampling with
Voronoi tassellation.

Figure 5-8: Friction region (green) and global feasible region (blue) for the JVRC-1 humanoid
robot. This Figure has been produced by Dr. Stéphane Caron (LIRMM, CNRS, France) who
created it in perspective of a future joint publication and he agreed with the display of this Figure
in this dissertation.

Definition: we define the static global feasible region Gfa as the set of all CoM coordinates
cxy ∈ R2, orthogonal to the direction of gravity, where the robot is able to withstand its own
weight, considering its own kinematics, its torque limits, the unilaterality of the contact forces
and the friction constraints.

Ga and Gfa, unlike their local counterparts Ya and Yfa do not depend on the instantaneous
robot configuration but they only depend on the position of the stance feet.
Fig. 5-8 shows the global feasible area Gfa (blue area) and the friction region Yf (green area)
for the Japan Virtual Robotics Challenge (JVRC-1) humanoid robot simulated in OpenRave
[147].
The blue region Gfa in Fig. 5-8a was obtained by consecutively computing the local actuation
areas over a two-dimensional grid of points with a predefined resolution. Considering that,
by construction, the global feasible area Gfa must be included inside the friction region Yf
(green), the grid of points was only generated inside Yf .
The red dots correspond to those CoM locations that do not belong to their own local feasible
region. The green grid points correspond to those CoM locations that instead do belong to
their own local feasible region. You can see that, if the grid point is green (i.e., it belongs
to his own local region) we then intersect the local actuation region with a small rectangle
of the same resolution of the grid; in this way we are able to enforce the fact that the local
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actuation region is only valid in a small neighborhood of the corresponding grid point. The
global feasible region (dark green line) Gfa is then obtained as the convex hull of all the small
local blue regions. You can see that some grid points which result to be inside Gfa they are
actually red and their partition is green because they resulted to be locally unfeasible; this
was probably due to numerical artifacts.

The explained strategy yields the desired global actuation region Gfa, however, the computa-
tion is not efficient (a new IP problem has to be solved at every grid point) and its accuracy
depends on the predefined resolution of the grid map. Dr. Stéphane Caron4, as a part of
our ongoing collaboration and with the perfective of a future joint article, proposes a more
efficient strategy that is based on Voronoi tassellations and that is shown in Fig. 5-8b. No-
tice, therefore, that the authorship of this particular strategy belongs to him and it is being
included in this dissertation prior to publication but with his permission.
The Voronoi partitions are generated starting from a uniform distribution of n sample points
in a convex set (in this case inside Yf ). It was proven that using uniform distributions for the
generation of Voronoi diagrams minimized the variance of the areas of the individual Voronoi
cells. The usage of uniformly sampled points in Yf (green area in Fig. 5-8b) and its partition
by means of a Voronoi diagram allows us to compute the same area Gfa as in the case in
which a grid map was used. In this case, however, the number of samples was considerably
reduced and, as a consequence, also the computation cost significantly decreased.

5-3-4 Sequential Iterative Projection (SIP) Algorithm

In this Section we present an alternative with respect to the grid-based or Voronoi-based
evaluation, presented in the previous Section, to compute the global actuation region. This
consists of a recursive solution of the Alg. 2 presented in Section 5-3-1. The algorithm is based
on the observation that, if the same set of contacts is kept, varying the robot configurations
will result in one of the two following events:

1. Yfa degenerates to a null area (either because the Jacobian matrix Ji, used for the com-
putation of C in Eq. 5-9, becomes singular or because the torque limits are exceeded);

2. Yfa has a positive area but the projection of the CoM is not inside it (as mentioned
above).

Case 1) occurs most commonly when the robot mass increases beyond the ratio allowed by
the torque limits. If, instead, the robot mass is constant (no external disturbances or no
external loads) throughout the task then the event 2) usually occurs before event 1).
Based on this observation, starting from a default CoM position we update the configuration

4LIRMM, CNRS-University of Montpellier, email: stephane.caron@lirmm.fr
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along a desired direction, represented by the unit vector a ∈ R2, and sequentially recompute
the instantaneous actuation region (using Alg. 2) until the distance between the edges of Yfa
and the CoM projection becomes smaller than the predefined acceptable tolerance ε (see Alg.
3).

Input: y,p1, . . .pnc ,n1, . . .nnc , µ1, . . . , µnc ,g1, . . .gnc ,J1, . . .Jnc , τ
lim
1 , . . . τ limnc

;
Result: vertex ĉ of the global feasible region Gfa along the direction a ∈ R2

Initialization: set the initial vertex guess ĉ ∈ R2 equal to the default CoM (x, y)
coordinates: ĉ0 = Pc;
Set d =∞ and ε→ 0;
while d > ε do

I) compute the contact points pĉ
1, . . . ,pĉ

nc
in the new CoM frame located in ĉi;

II) solve inverse kinematics: q = IK(pĉ
1, . . .pĉ

nc
);

III) compute C and d as in Eq. 5-9 for the joint configuration q;
IV) Yfa = IP (A1,A2,B,u,C,d);
V) find the intersection e ∈ R2 between the desired direction a and the edges of Yfa;
VI) d = ||e− ĉ||2;
VII) update the vertex ĉ towards e: ĉk+1 = ĉk + α(e− ĉk)

end
Algorithm 3: Sequential Iterative Projection (SIP) Algorithm

Differently from the tests reported in Fig. 5-7 (where all the CoM were homogeneously
distributed along one segment), in this case we increasingly update the new tested CoM
position ĉ of a given gain α of the distance d between the current value and the intersection
e between the local region Yfa and the considered search direction:

d = ||e− ĉ||2 (5-19)

With the usage of a suitable gain α, this allows the distance d to recursively converge to zero;
whenever the distance becomes lower than the predefined tolerance ε the procedure is stopped
and the latest CoM position ĉ is considered to be a vertex of the global feasible region Gfa.

This strategy allows to efficiently find a vertex on the edge of the global feasible region by
recursive computations of the IP algorithm. The strategy can then be repeated in multiple
directions (see for example Fig. 5-9b) in order to reconstruct the entire global feasible region
Gfa or just a part of it in the region of most interest.

The SIP algorithm can also be considered as a sequential linearization algorithm that recur-
sively estimates the robustness of the considered CoM along a specific motion direction. The
SIP could be used, for instance, to estimate how far ahead in a specific direction the CoM
may move without violating neither friction nor actuation constraints.
Alternatively a variant of the SIP can be considered where, rather than testing different CoM
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Figure 5-9: (a) depiction of the SIP algorithm. We can see that the distance di = ||ei − ĉi||2
converges to zero if the gain α is properly set; (b) by repeating the SIP algorithm in different
directions we can build an estimate of the actuation region.

positions and/or trunk orientations, different foot positions are tested. This might be inter-
esting for example for foothold planning applications.
The underlying idea of the SIP algorithm (i.e., to sequentially change one quantity (CoM
position, trunk orientation or feet positions) and to-recompute a new local area till when the
convergence criterion is met) remains therefore valid.

As briefly mentioned above, the local actuation areas computation requires the knowledge of
the robot limits and configuration. For this reason, unlike the classical friction regions, the
actuation-consistent regions may vary depending on the robot height or robot orientation. In
the next Section I will attempt to exploit this property by estimating a 3D volume of friction-
and actuation-consistent CoM positions.

5-4 3D Feasible Volume

Fig. 5-10 shows a simulation of the JVRC-1 robot climbing a vertical ladder.
In this case, we model the robot with unilateral contact constraints (intersection of friction
cones and force polytopes) at the feet and bilateral contacts (only force polytopes and no
friction cone constraints) at the hands. We then compute the friction region Yf using Alg. 1
setting infinite values of the friction coefficient on the hand contacts. This yields as a result
the whole horizontal plane as friction region. This is due to the fact that, because of the
opposition of the contacts on the vertical ladder (like in the chimney example of Fig 4-2), the
robot is able to exert any contact force, so it could ideally locate its CoM anywhere in the
x, y plane (if kinematic limits are not considered).

The blue convex set in Fig. 5-10a is the global feasible region Gfa. The blue 3D volume in
Fig. 5-10b is the convex hull of multiple Gfa computed at different robot heights. Gfa can
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(a) Friction region (green) and global feasible
region (blue) for a specific robot height.

(b) Friction region (green) and global feasible
volume (blue)

Figure 5-10: JVRC-1 humanoid robot climbing a ladder.

therefore be seen as a slice of the blue 3D volume in the direction orthogonal to gravity.
In the ladder climbing scenario, the robot-specific kinematics highly affect the climbing capa-
bilities of the robot. This can be captured by the upper and lower bounds of the 3D feasible
volume which, depending on the values of the torque limits may be due to either of two
following causes:

1. the area of the global actuation region Gfa converging to zero;

2. the arms and legs Jacobians reaching their kinematic singularities (i.e., point 1 in Sec-
tion 5-3-4).

The usage of 3D feasible volumes, such as the one shown in this picture, could overcome the
typical limitation of static equilibrium approaches for which the CoM height cz is unobservable
(because parallel to gravity). Such 3D volumes could indeed enable the planning of friction-
and actuation-consistent robot height trajectories besides the planning of the coordinates
orthogonal to gravity.

5-5 Center of Mass and Foothold Planning

The distance m between the CoM projection cxy = Pc and the edges of the instantaneous
actuation region can be seen as a static instantaneous measure (or margin) of how far the
robot is from hitting one of the torque limits. A good template to show the usefulness of the
feasible regions is to exploit them for planning trajectories for locomotion. In this Section
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we briefly present an online CoM trajectory planning strategy that employs the local feasible
region Yfa as its main criterion for balancing ensuring actuation-consistency on rough terrains.

5-5-1 CoM strategy

As we only deal with CoM planning in this Section, we will assume the gait sequence, phase
timings and step locations to be predefined. Since the feasible region, at the actual state,
is restricted by the quasi-static assumption (an extension to the dynamic case with non-
negligible CoM horizontal acceleration is part of future works) a quasi-static gait is a good
template to test its applicability.

As the main hardware platform for our experiments is the quadruped robot HyQ, we will
consider here a static quadrupedal gait called crawl [11]. In the crawl, the robot base does
not move during the swing phase and, during this phase, only one foot at the time is allowed
to lift-off from the ground and move to a new foothold while all the other three feet have to
be in stance.

The most critical phase, in terms of stability and margin with respect to the joints torque
limits, is this triple stance phase (i.e., the swing phase) where the robot’s weight must be
distributed only on three legs while, during the four-stance phase, the weight is distributed on
the four legs. The CoM is meant to move only during the four-stance phase, to enter the future
support region which is opposite to the next swing leg. Therefore, after each touchdown, we
re-plan a polynomial trajectory that links the actual CoM position with a new target inside
the future support region. This enables us to completely unload the swing leg before the
lift-off and naturally distribute the weight onto the other three stance legs. In our previous
work [11] we computed this target heuristically without any awareness of the joints torque
limits (actuation limits). Specifically, we were computing the target point at a "hand-tuned"
distance from the main diagonal of the support triangle, in order to ensure enough robustness
against possible tracking errors in the CoM position and in order to sufficiently load the
off-diagonal leg. However, this can be inaccurate in complex terrains, because:

1. the friction region Yf coincides with support triangle (convex hull of contact points)
only in the case where both feet and terrain normals are coplanar (e.g. flat terrain) [57];

2. an increased load on the robot or an inconvenient robot configuration can further restrict
the feasible region Yfa making it considerably smaller than the friction region.

Therefore, the heuristic target, since it is not formally taking these aspects into account, might
fail in situations that are more demanding due to a complex terrain geometry. Conversely,
using feasible regions to compute the location of the CoM target, allows us to select the
target for the CoM that results in a statically stable robot configuration, in the case of: 1) a
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generic terrain shape (i.e. non coplanar feet, each one with different normal at the contact)
2) different loading conditions (because it considers the actuation limits of the robot).
Planning the target in a scaled region also allows us to increase the robustness against external
disturbances and uncertainties, in accordance to the chosen scaling factor.

At the touch-down instant, we compute the local feasible region Yfa, considering as inputs the
position of the three stance feet of the future support triangle (the feet sequence is predefined)
and the corresponding normals ni at the expected contact points. To evaluate the jacobians,
(necessary to map the actuation constraints into a set of admissible contact forces), we provide
also the future CoM position predicted by the heuristics5 If the projection of the actual CoM
cxy = Pc is inside Yfa, we then set the target CoM equal to the actual CoM c ∈ R3. If it is,
instead, outside the region Yfa, we set the target CoM equal to the point x∗ on the boundary
of the region (or of the scaled region if we want to provide a certain degree of robustness)
that is closest to cxy. This allows us to minimize unwanted lateral/backward motions. To
obtain the point x∗ we solve the following QP program:

x∗ = argmin
x∈R2

‖x− Pc‖2 (5-20)

s. t. Ax ≤ b (5-21)

where we minimize the Euclidean distance between a generic inner point x and the actual
com cxy. A and b matrix represent the half-space description of the polygon Yfa.
In Fig. 5-11 we show an image of the feasible region (light gray) and the scaled feasible region
(dark gray) shrunk by three different scaling factors (0.7, 0.8 and 0.9). The transparent
polygons represents the friction region Yf 6. The scaling procedure can be defined as an affine
transformation that preserves straight lines and parallelism relationships among the edges of
the feasible region. The scaling can be done with respect to the Chebyshev center (i.e., the
center of the largest ball inscribed in the feasible region) or with respect to the centroid. The
former is more computationally expensive because it requires the solution of a LP; the latter
is faster to compute because it can be found analytically as the average of all the vertices.
The centroid can be considered as a good approximation of the Chebychev center whenever
the feasible region presents good symmetry properties. Whenever the feasible region is not
symmetric, however, the centroid might considerably differ from the Chebychev center thus

5In the case of the global feasible region this is no longer necessary. However, since the computation time
to obtain the global region is much higher than the time requeired to compute Yfa, for online re-planning, we
stick to the instantaneous region. In future works we intend to embed the computation of the global feasible
region in the online motion planner.

6Note that just scaling the joints torque limits (instead of the feasible region) might not results in a
conservative region. This is because some boundaries of the resulting feasible region could be determined by
the friction region itself, thus producing no improvement in the robustness against the torque limits. For this
reason, it is advisable to scale directly the feasible region rather than torque limits used to compute the feasible
region.
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(a) scaling factor = 0.7 (b) scaling factor = 0.9 (c) scaling factor = 0.8

Figure 5-11: Local feasible regions:

(a) Classical friction region (transparent);

(b) Local feasible region Yfa (gray);

(c) Scaled local feasible region Ŷfa (dark gray) for increased robustness.

resulting in a value of the robustness marginm lower than desired. In the case of the centroid,
the vertices v̂ of the scaled region Ŷfa can be computed by scaling the vertices v of Yfa as:
v̂ = s(v − vc) + vc where vc is their centroid.

As previously mentioned, notice that the actuation margin defined here represents a method
to verify whether there exists a set of admissible joint torques that can withstand the robot’s
weight for the considered configuration. In practice, however, depending on the implementa-
tion of the whole-body controller, one of the torque limits might be reached even when the
margin m is still positive [2].

This is because, due to the force redundancy, the the whole body controller can map the
centroidal wrench onto the ground reaction forces in an infinity of ways. For example, for a
certain mapping, a torque limit on a specific joint can be hit, but there might exist another
solution where the load is redistributed on the other joints where that limit is not hit anymore.
A positive margin in the feasible region, only tells us the existence of at least one solution
where none of the torque limits are hit. The usage of an actuation-consistent whole-body
controller that explicitly enforces torque constraints, (suitable implementations of such con-
trollers can be found, by instance, in [148, 123, 23]) can help to redistribute the load when is
possible.

5-5-2 Foothold Planning

The foothold planning strategy that we present in this Section represents a sample-based
strategy to improve the navigation capabilities of the HyQ quadruped robot on rough terrains.
Our strategy employs the map provided by the perception module and seeks among the
samples the foothold location that maximizes the area of the feasible region Yfa.
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We attempt to exploit the computational efficiency of the IP algorithm as in Alg. 2 in order
to plan foothold locations that ensure the robot’s stability and actuation consistency while
traversing rough terrains. As in the previous Section we assume here a static crawl gait with
predefined phase durations, where only one foot can break the contact from the ground at
the time. The idea is to find, at each lift-off, the most suitable foothold to maximize the
area of the feasible region for the next swing leg. Our strategy consists in sampling a set of p
candidate footholds evaluating the height map of the terrain in a neighborhood of the default
step location (i.e. updating the corresponding z coordinate and normal orientation from the
surface perceived by the vision module7) [149, 150]. The default step location is simply a
function of the user-defined desired linear and angular velocities of the robot and it neither
considers the external map of the surrounding environment, nor the stability and actuation
consistency requirements [11].

Fig. 5-12 shows a foothold planning simulation in which five different candidate footholds
(red balls on the step) are considered.

You can see in Fig. 5-12 that, when a map is available for the (x, y) candidate footholds
positions, the corresponding z component is updated according to the value provided by
the extero-ceptive perception (height map). As additional feature, we discard the footholds
that are: 1) close to the edge, 2) would result in collision of the shin, 3) are out of the
workspace of the leg or are associated with low mobility. The next step consists in computing
the local feasibility region Y ifa for the p considered foot locations (i = 1, . . . , p) keeping
fixed the set of feet that will be in stance during the following swing phase. Since the local
feasible region depends on the robot configuration, we consider the future position of the CoM
(computed through the heuristics) for the next triple stance phase and obtain the future joints
configuration through inverse kinematics. This joints configuration is then used to update the
jacobians needed for the computation of the candidate local feasible region Y ifa. The foothold
planner then selects, among the reduced set of admissible footholds, the one that maximizes
the area of the correspondent feasible region8.
In the baseline walking on flat terrain, when the joint torques are far away from their limits,
the default foothold is selected. Conversely, on more complex terrain, when the robot is far
from a default configuration (e.g., when one leg is much more retracted than the other legs),
the scaled version Ŷfa (described in the previous Section) can take on a small area (see Fig.
5-12). In this case the default step will be corrected in order to enlarge this area and, as a
consequence, to increase the robustness to model uncertainties and tracking errors.

7To avoid corrections in unwanted directions, we define the sampling direction along the direction of the
predicted step, (i.e. in consistent with the desired velocity).

8Another approach could consist in maximizing the residual radius (i.e. radius of the largest circumference
inscribed in the region), however, we noticed that often multiple candidate footholds may return the same
residual radius but different areas. This is the case any time that the CoM projection is closer to a friction-
related edge of the feasible region rather than an actuation-related edge of the region.
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(a) quadruple stance phase (b) triple stance phase

Figure 5-12: Vision based foothold planning: the five red balls represent five candidate footholds
for the current swing leg. The selected foothold is drawn with a yellow ball and a blue ball. The
light gray and the dark gray regions represent, respectively, the feasible region and the scaled
feasible region.

5-6 Simulation and Experimental Results

The superiority of a planning strategy based on the feasible regions with respect to our
previous heuristic strategy can be demonstrated by either increasing the load acting on the
robot during a standard walk on a flat terrain or by addressing a challenging terrains. Both
scenarios, and any combination of external loads and complex terrains, take indeed the robot
closer to its actuation limits.
As a first result we report the validation of the feasibility margin defined as the distance
between the CoM projection and the edges of the feasible region. We then report some
simulation and experimental data of the CoM and foothold strategy that we described above
in Sec. 5-5-1. The results of this strategy can be seen in the accompanying video9.

5-6-1 Validation of the Feasibility Margin

Figure 5-13 represents the data collected in a simulation where we applied a vertical increasing
load on the CoM of the HyQ robot up to −600N (upper plot). As a consequence of this
external load the feasible region shrinks with a consequent reduction of the feasibility margin
s from 0.24m to about 0.06m (lower plot). The feasibility margin s is here defined as the
minimum distance between the CoM projection cxy and the edges of the feasible region Yfa:

arg max
s

aTi cxy + ||ai||2s ≤ bi, i = 0, . . . , Nv (5-22)

9https://www.dropbox.com/s/g1x6gwztghm0qwe/actuation_region_vid.mp4?dl=0
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For this validation we also introduce the joint-torque limits violation flag β whose definition
is the following:

β =
{ 0 if τi ∈ [τmaxi , τmini ], ∀i = 0, . . . , n

1 otherwise
(5-23)
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Figure 5-13: Validation of the distance between the CoM projection and the edges of the feasible
region Yfa: we can see that one of the joint torque limits is hit (i.e., β = 1) approximately in the
same time when the feasibility margin s becomes negative (lower plot).

if s is negative it means that the e defined as the minimum distance between the CoM
projection cxy lies outside the edges of the feasible region Yfa. After second 74 (yellow
vertical line) the external weight is fixed to −600N and the robot starts displacing laterally
from the initial default configuration with an increasing cy coordinate. We can see in the
second plot from above that, when the robot has moved laterally of about 0.12m (red vertical
line), the feasibility margin s becomes zero and, approximately in the same time, the torque
limits violation flag β becomes one, meaning that one of the joint torque limits of the robot
has been reached (second plot from below).

5-6-2 Walk in Presence of Rough Terrain and External Load

The next simulation result that we report in this Section is a walk over a 22cm high pallet,
where the HyQ robot only lifts two lateral legs on the pallet while the two other legs always
remain on the flat ground. The considerable height of the pallet and the asymmetry of the
terrain force the robot to take on complex configurations to step up and down the obstacle
and, even if no further external load is applied, the robot might easily reach its joint-torque
limits. In this scenario we compare the behavior of two different strategies:
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1. friction-region based walk: this motion planning approach combines the foothold selec-
tion strategy explained in Sec. 5-5-2 with a CoM motion planning that aims at always
keeping the CoM projection inside the scaled friction region Ŷf ;

2. feasible-region based walk: this approach uses the same foothold strategy as above but
makes sure that the CoM projection always lies inside the scaled feasible region Ŷfa. In
this way therefore both friction and actuation constraints are explicitly considered at
the motion planning level and are continuously re-planned for.

Evaluating the performance of these two strategies using the feasibility margin s would skew
the results in favor of the latter method, considering that it always makes sure that there exists
a minimum feasible margin s itself. For the assessment of the two planners’ performances
we therefore define the minimum joint torque margin mτ . This corresponds to the minimum
distance between the torque of each joint of the robot and their corresponding maximum and
minimum values:

mτ = min(d0, . . . , dn) (5-24)

where:
di = min(τmaxi − τi, τi − τmini ), i = 0, . . . n (5-25)

The quantity mτ represents a valuable measure to evaluate how well the proposed online
motion planner is able to keep the joint torques away from their limits, while navigating
complex geometry environments, being able to reach to the user direction commands or to
unexpected disturbances.
It is important to mention that we evaluate mτ only during during the triple support phases
(i.e., when only three legs are in contact with the ground and the fourth leg is in swing).
This is because the triple support phase is the most critical for the joint torque limits (all
the robot’s weight is loaded on three legs rather than four) and because, as a consequence,
the CoM planning strategy optimizes the position of the CoM only for this phase. Because of
the static assumption that we assumed in Eq. 4-16, the feasible region computation is only
valid when the velocity of the robot’s base is zero, condition which is not respected during
the four-stance phase (i.e., when the robot’s base moves).
The values of mτ for the two simulations are reported in Fig. 5-14 (above). The red line
shows the evolution of mτ in the case of the friction region-based planning over the entire
simulation (up to 14s). The blue line shows instead the evolution of mτ in the case of the
feasible region-based planning over the entire simulation (up to 21s). The recording of both
simulations is stopped when the robot steps down the pallet with all the four legs, the different
duration of the simulations is therefore due to the different behavior they present during the
negotiation of the pallet. We can see that the minimum joint torque margin reached by the
friction region based simulation of 35Nm (dashed red line) occurs towards the conclusion of
the experiment when the robot steps down the pallet with the last leg. The feasible region
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based walk instead performs an increased number of shorter steps before stepping down the
pallet, in this way the simulation lasts longer and the minimum joint torque margin of 39Nm
(dashed blue line) is higher than the experiment where only friction was considered.

The lower plot of Fig. 5-14 refers instead to a hardware experiment where the HyQ robot
walks over a moderately rough terrain made of bricks and plastic tiles while also carrying
a 10kg extra load on its trunk. Also in this case, as in the simulation, the feasible region
based approach presents a higher minimum joint torque margin of 29Nm (dashed blue line)
compared to the 21Nm margin that we measured for the friction region based approach
(dashed red line). The results of the hardware experiments can be found in the accompanying
video.
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Figure 5-14: minimum joint torque margin in simulation and hardware experiments.

5-7 Summary

In this Chapter I have presented a novel approach for projecting joint-torque constraints from
the high dimensional joint space (n + 6 DoFs) to the two-dimensional subspace of the task-
space orthogonal to gravity (Section 5-3). Despite the static assumption and the local nature
of the resulting 2D friction- and actuation-consistent region, this strategy promises to improve
the robustness of legged robots against the violation of joint torque limits. Thanks to the
computational efficiency of the local feasible region Yfa estimation, actuation-consistency and
robustness can be tested online at a minimum of 50Hz rate and without any approximation
regarding the location and orientation of the contacts. This last point allows are approach
to be embedded in map-based foothold optimization strategy that plans feasible footholds on
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the height map provided by the vision module (see, for example, Fig. 5-12).

In Sections 5-3-3 and 5-4 we also defined the 2D global feasible region Gfa and its 3D counter-
part. While being less computationally efficient than the local actuation region, these can be
seen as useful and intuitive tools for the understanding of the dynamic properties of legged
robots and their locomotion capabilities. Example applications for such quantities involve,
for example, the selection of a feasible robot height on a multi-contact scenario, the CoM
planning for a ladder climbing task or the optimization of the robot pose in order to step on a
very high obstacle. The spectrum of possible applications of the 2D actuation-aware regions
can be extended also to robotic grasping tasks for the assessment of the grasp feasibility
and to industrial manipulators for an intuitive indicator of the dependency between maximal
payload and robot configuration.

in the following list I will sum up the main concepts proposed in this Chapter:

1. the 2D local actuation region Ya and the 2D local feasible region Yfa represent the
two-dimensional counterparts of the 6D AWP and FWP under the assumption of static
stability (only gravity acting on the robot’s CoM);

2. the local actuation region Ya, depending on the robot’s configuration and actuation
capabilities, may be larger than the friction region Yf (i.e., what is usually known with
the name of support region). This is because Ya does not consider the friction limits
and, therefore, represents the set of all those locations where the robot may place its
CoM if it was also able to exert negative normal contact forces (pull the ground instead
of just pushing). The local feasible Yfa, instead, does consider the friction limits and,
therefore, is inscribed inside the friction region Yf by construction;

3. Ya and Yfa can be computed at interactive rates by means of the Iterative Projection
(IP) algorithm. This is an alternative approach to the option of computing, respectively,
the AWP and FWP first and performing a standard projection on these objects later
(see Fig 5-15). This opens the doors to the possibility of devising new motion planners
that are capable of evaluating online the actuation consistency besides the locomotion
stability on any arbitrary environment (e.g., no simplifying assumption is taken on the
robot’s morphology or on the structure of the terrain);
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Figure 5-15: Graphic representation of the possible ways to compute the feasible region.
One approach consists in performing a standard projection of the FWP while the other
method consists in performing the Iterative Projection (as proposed in this Chapter) directly
from the friction cones Ci and the force polytope constraints Ai.

4. as an example of usage of the local feasible region in legged locomotion, we formulate
a sample-based online motion planner capable of concurrently optimizing feasible CoM
trajectories and foothold locations online. The proposed planner employs the map
provided by the onboard perception to select the optimal footholds and it can react to
possible external disturbances and/or commands given by the robot’s operator;

5. the global actuation region Ga and the global feasible region Gfa, unlike their local
counterparts, represent configuration independent quantities and only depend of the
position of the contacts. Different ways are proposed in this Chapter to compute these
global regions, all of which base on sequential recursion of the IP algorithm. The
computation of the Ga and Gfa can not be achieved online with satisfactory accuracies
and, as a consequence, is proposed in this thesis a tool for offline motion planning
optimization and for mechanical design optimization.
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Chapter 6

Discussion and Conclusions

This Chapter first recalls the main contributions and final conclusions that have already been
mentioned in the summary of Chapters 3, 4 and 5. It then continues with a brief discussion
of the main take-home messages and drafts some possible future development of the concepts
presented in this dissertation.

6-1 Conclusions

1. Chapter 3 introduces the first contribution presented in this dissertation, namely a strat-
egy for the generation of dynamically stable omni-directional bounding on quadruped
robots. An offline optimization problem is employed for the synthesis of a baseline
stable bounding gait in place where the stability of the simplified 2D planar sagittal
model of the robot is obtained by limit cycles analysis. The result of the optimization
is then adapted online to the user-defined desired linear and angular velocities or to
compensate possible external disturbances by means of heuristic strategies such as the
tuning of the contact force impulses or the reactive adjustment of the target footholds
using a stability criterion based on the Center of Pressure (CoP).

2. Chapter 4 presented a substantial change of approach with respect to the previous
Chapter where the heuristic strategy only valid for bounding gait on moderately rough
terrains is exchanged for an optimization-based approach applicable to environments
of complex geometry. In this change of perspective key elements of legged locomotion
such as friction cones and joint torque limits take on a role of primary importance. The
contribution of this Chapter, in particular, consists in a method to project the joint
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torque limits into the 6D space of the centroidal wrench. The resulting set of 6D linear
constraints, called Feasible Wrench Polytope (FWP), can be used to devise actuation-
consistent motion planners that do not explicitly optimize neither the joint torques, not
the contact forces.

3. Chapter 5, in continuity with Chapter 4, has focused on the feasibility constraints that,
especially in presence of complex environments, most commonly hamper the successful
hardware completion of the locomotion task. In this Chapter, in particular, I attempted
to formulate two intuitive indicators of the locomotion capabilities of legged robots,
which I defined under the name of local and global feasible regions. These polygons
are indeed defined in the more easily portrayable 2D space compared to 6D wrench
space in which the FWP was defined in Chapter 4. This increased intuitiveness and
computational efficiency came, however, with an assumption of static stability.

6-2 Discussion

In the realm of online motion planning, simplified dynamic models, or templates [41], are
widely used and their inability to consider friction limits, actuation limits and kinematic
joint limits has been traded off in exchange of their great descriptive power when it comes to
balance and keep stability against gravity. However, when the complexity of the terrain to be
negotiated increases, such constraints cannot be omitted anymore and the use of simplified
dynamic models has to be put aside in favor of more complex preview models such as the
ones based on the full dynamic models (see Section 2-1-2).
In my dissertation (Chapters 4 and 5 in particular) I attempted to find a suitable trade-off
between the accuracy of whole-body models and the simplicity of reduced models, a trade-off
that could fit well to the problem of legged locomotion on rough terrains and that could result
in an increase of robustness when performing hardware experiments on complex geometry
environments. My method for achieving this goal consisted in projecting the joint-torque
limits into lower dimensional spaces such as the 6D centroidal wrench space (Chapter 4) or
the 2D space of Center of Mass (CoM) positions (Chapter 5) orthogonal to gravity.

The underlying cornerstones of the approach developed throughout this dissertation for the
generation of legged locomotion on rough terrains can be summarized in the following list:

1. interactive motion planners (i.e., online, or even real-time planners) play a key role in
the compensation of the constantly present modeling errors and external disturbances.
Suboptimal optimization strategies based on simplified dynamic models can often show
superior performances with respect to highly nonlinear formulations based on accurate
descriptions of the robot. The strategies presented in this dissertation, in particular the
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local feasible regions described in Chapter 5, fit well to this requirement and may result
in a considerable increase of the system robustness when negotiating rough terrains;

2. Feasibility constraints in highly dimensional spaces, such as the joint-space torque lim-
its, can be conveniently projected into lower dimensional spaces, e.g., the 6D space of
feasible centroidal wrenches or the 2D space (orthogonal to gravity) of feasible CoM
positions. Such projections may lose important details about the system dynamics such
as the possibility to evaluate the absolute magnitude of the feasibility margin because
of the non-homogeneous units (see, for example, the dimensionless feasibility factor in
Section 4-4-2), however, they can still be used to assess the feasibility of a given motion
plan;

3. In the motion planning setting, the possibility of projecting joint-space torque limits
into the centroidal space - or a subset of it - opens the doors to the synthesis of feasible
actuation-consistent motion plans without the need of explicitly optimizing neither the
joint torques nor the contact forces. Indeed, if the trajectory of the gravito-inertial
wrench wGI is within the limits of the FWP (as in Chapter 4) or if the CoM trajectory
is within the limits of the feasible region Yfa (as in Chapter 5), there is then no further
need to explicitly plan the trajectory of the contact forces nor the trajectory of the joint
torques. This consideration may substantially reduce the computational burden on the
whole-body controller that is no more required to verify the feasibility of the reference
trajectories provided by the motion planner and can, therefore, focus on the tracking of
the desired trajectories with no need of preview.
This reduced burden on the motion controller does not, apparently, affect the complexity
of the online motion planner. As a matter of fact, the trajectory optimization problem
does not require a large number of optimization variables since the contact forces and
the joint torques are implicitly embedded in the constraints of the centroidal space
variables (e.g., CoM wrenches wGI in the case of the FWP or CoM horizontal positions
cxy in the case of the feasible region Yfa). These implicit constraints can, however, be
highly nonlinear and may, therefore, lead to local minima and to an increased sensitivity
on the initial guess of the nonlinear solver;

4. A straightforward approach to the problem of projecting the joint-actuation limits could
have been the option to simply clamp the friction cones with a fixed maximal value of
the component of the contact forces normal to the ground (rather than intersecting them
with the force polytopes) [122]. However, the restrictive consequences of this choice in
motion planning scenario would be twofold:

(a) on one side, it would be hard to select a realistic value of the normal force upper
bound without excessively constraining the problem;
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(b) on the other side, the information regarding the relationship between the maximal
contact forces and the limb configuration would be neglected. In Fig. 4-10 you
can see that maximal normal and tangential forces can only be achieved on the
boundaries of the legs workspace. Besides that, a maximal normal contact force
can only be achieved if coupled with a predefined tangential force (i.e., whose value
will correspond to a vertex or an edge of the actuation polytope Ai). A constant
normal force value would lose this information and it would mistakenly consider
any tangential force component inside the friction cone to be feasible. Considering
a constant maximal contact force would, therefore, allow to generate conservative
motion plans but it would prevent the robot from optimizing its own body posture
and contacts distribution.

6-3 Future Works

Among the future works I would like to mention the possibility of embedding into a simplified
model more feasibility constraints such as the kinematic joint limits and the occupancy of
the robot which may cause possible self-collisions or collisions with the environment. These
constraints are usually roughly over-approximated by box constraints in the task space and
a large room for improvement seems to be available. I am indeed convinced that preserving
and understanding the relationship between the high dimensional joint-space and the lower
dimensional task-space is a key aspect for the generation of agile and dexterous locomotion.
Examples of similar approaches attempting to build proxy constraints between joint-space
feasibility constraints (joint kinematic limits, self-collisions, etc.) and task space can already
be found in the literature [53, 55]. The same problem can be tackled from a data-driven
perspective, attempting to learn from experience the set of viable states that a robot can
reach or trying to build an internal map of the

Besides the improvement of motion planners algorithmic efficiency that I dealt with in this
dissertation, there is, in my opinion, also a remarkable need in the literature of improved
numerical methods specifically tailored for legged locomotion. Considerable advancements
have been achieved in recent years, for example, to find efficient approximations to numerical
problems such as the bilinearity of the angular momentum and of the phase timings [89, 151].
There still exist, however, a number of numerical challenges, such the complementarity of
contact forces and feet accelerations or planning taking into consideration the shape of a
complex (non-convex) environment, that still prevent the existing motion planners for legged
robots to reach the desired flexibility levels.
Therefore, the future works are in the prospect of reliably implementing on the robotic hard-
ware motion planners for legged robots able to jointly optimize online (i.e., interactively) CoM
trajectories, feet trajectories, feet contact forces, base angular dynamics and phase durations
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on arbitrary terrains.
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Appendix A

Differential Geometry and Floating
Base Systems

A-1 Singularity of the Orientation Manifold

The SO(3) orientation manifold is a mathematical group that does not admit a global chart,
meaning that there exists no singularity-free minimal set of coordinates (e.g., 3 coordinates in
the case of SO(3) and 1 coordinate in the case of SO(2)). This is a numerical issue which is due
to the winding of the orientation coordinates: trigonometric functions are not bijective (there
exist infinite arguments that can yield the same result) and present discontinuities which
make these function not fully invertible. This limitation becomes apparent if we consider, for
example, the matrix B(Θ) that maps the rates of the Euler angles Θ = [α, β, γ]T (a minimal
set of coordinates) into the angular velocity ω:

ω =


ωx

ωy

ωz

 =


0 cos(α) sin(β) sin(α)
0 sin(α) − sin(β) cos(α)
1 0 cos(β)


︸ ︷︷ ︸

B(Θ)


α̇

β̇

γ̇

 (A-1)

We can see that det(B(Θ)) = sin(β) which proves the fact that the mapping B(Θ) is singular
(det(B(Θ)) = 0) for β = 0 + 2kπ with k ∈ Z.
This issue becomes particularly dangerous whenever we need to compute the Euler angles Θ
of a rigid body (e.g., in the development of a simulator) by integration of the Euler rates Θ̇,
computation that requires the inversion of B(Θ) as a preliminary operation in order to obtain
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Θ̇ from ω:
Θ̇ = B(Θ)−1ω (A-2)

In order to overcome the numerical singularities of orientation manifold one could consider to
switch between two different sets of minimal coordinates that are defined with respect to two
different conventions. In this way it is possible to switch from one convention to the other
whenever the currently considered one gets close to a singularity.
The second option is to use a non-minimal set of coordinates (e.g., quaternions) that allows
to integrate the equations of motion with one unique orientation convention.

Let us consider, for example, the generic dynamic equation of motion of fixed base industrial
manipulators which is commonly obtained by solving the Langrange Equation (see Eq. 2-13)
of the system:

H(q)q̈ + C(q, q̇) = τ (A-3)

In the case of Eq. A-3 which refers to a fixed base manipulator, none of the n actuated
joints of the system belongs to SO(3); as a consequence there is no singularity issue in the
integration of q̇ ∈ Rn and q̈ ∈ Rn and Eq. A-1 is, therefore, well-posed.
If we instead consider a floating base system we can then obtain its equation of motion using,
rather than the Lagrange Equation, the Recursive Newton Euler Algorithm (RNEA) [25] that
yields an equation of the following form:

H(q)ṡ + C(q, s) = τ (A-4)

where s is the generalized velocity vector which includes the base’s pose ν = [ẋT ,ωT ]T and
the joints velocity q̇ = [q̇1, . . . , q̇N ] ∈ R6:

s =
[
ν

q̇

]
=


ẋ
ω

q̇

 . (A-5)

Eq. A-4 is therefore well suited for floating base systems

A-2 Non-Holonomic Constraints

In the domain of robots’ kinematics holonomic constraints are all those constraints that can
be solely expressed in terms of the joints’ position:

c(r, t) = 0 (A-6)

where r is the generalized position and t is the time variable. A system is said to be holonomic
if all its constraints are holonomic.
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Non-holonomic constraints are instead those constraints that have to resort to the joints
velocities and/or accelerations variables besides the joints position variables in order to be
formally described. In other words, the non-holonomic constraints can only be expressed in
the following form:

c̄(r, ṙ, t) = 0 (A-7)

The correlation between non-integrability and constraints’ anholonomy arises from the con-
sideration that non-holonomic constraints cannot be integrated in order to be expressed as
a function of the joints position only, otherwise they would simply be the derivative of a
holonomic constraint.

Typical examples of non-holonomic constraints for wheeled vehicles are the contact constraints
that enforce no lateral slippage of the wheels. In the wheeled robots’ community, the vehicle’s
holonomy is often coupled with the omni-directionality of the platform itself: if the system is
holonomic that means that a motion can be instantaneously achieved in any arbitrary direc-
tion regardless of the joints configuration. If the vehicle is non-holonomic, on the other hand,
(e.g., the unicycle model) then the robot can only move in the direction given by the wheels’
orientation and, to achieve a lateral motion, it will first need to re-orient its wheels.
One consequence of the above considerations is the fact that the velocity of non-holonomic sys-
tems depends on the instantaneous configuration, leading to the conclusion that the number
of independent position variables is higher than the number of independent velocity variables
(at least one velocity varibles can be expressed as function of the configuration) [25, pag. 41].

In the domain of floating base legged robots, a typical example of non-holonomic constraint
regards the equation that enforces the momentum conservation; this can be written by means
of the Centroidal Momentum Matrix (CMM) AG(q) in the following way:

hG = AG(q)q̇ = 0 (A-8)

while the first three rows of Eq. A-8, relative to the linear momentum, encode holonomic
constraints, the last three rows regarding the angular momentum are instead non-holonomic
[152, 153]. The non-holonomy of the angular momentum of floating base systems (see Wieber
et al. [154]) is due to the non-exactness (and thus non-integrability) of the angular velocity
of the floating base link ω0 (please see [26, pag. 40] for an exhaustive explanation of the
non-exactness of the angular velocity).
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Appendix B

Computational Geometry

I will recall in this Appendix few of the main concepts and definitions connected to computa-
tional geometry that are heavily used in this dissertation. Most definitions are takes by the
following sources [139, 141, 125, 19].

B-1 Generic Bounded and Unbounded Polyhedra Definitions

Main definitions and terminology used in sets representation and adopted in this dissertation:

• A convex polyhedron H is a subset of Rd that solves a finite set ofm linear inequalities.
The volume of a polyhedron can therefore be either bounded or unbounded. This
is a generic definition that may include both (bounded) polytopes and (unbounded)
polyhedral cones.

H = {x ∈ Rd | Ax ≥ b} (B-1)

with A ∈ Rm×d and b ∈ Rm.

• A convex polytope P is a subset of Rd that solves a finite set of m linear inequalities
and is bounded.

P = {x ∈ Rd | Ax ≥ b} (B-2)

with A ∈ Rm×d and b ∈ Rm.

• A convex polygon P is a polytope in dimension d = 2:

P = {x ∈ R2 | Ax ≥ b} (B-3)

with A ∈ Rm×2 and b ∈ Rm.
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• A convex zonotope Z is a special kind of polytope in Rd that presents particular
similarity with respect to the its center [155, 156]. A zonotope can therefore be fully
described by its center c ∈ Rd and its p generators g ∈ Rd.

Z =
{

c +
p∑
i=1

αigi | αi ∈ [−1, 1], gi ∈ Rd, c ∈ Rd
}

(B-4)

• A convex polyhedral cone C is a subset of Rd that solves a finite set of m linear
inequalities. Geometrically, each linear inequality defines a hyperplane that has to pass
through the origin.

C = {x ∈ Rd | Cx ≥ 0} (B-5)

with A ∈ Rm×n and 0 ∈ Rm is a null vector.

Convex polyhedra, polytopes, zonotopes and cones are called d-polyhedra (d-polytopes, d-
zonotopes or d-cones) if they have a non-zero interior in Rd; d-polyhedra will have a null
interior in all dimensions larger than d (in which case they are nicknamed flat polyhedra/poly-
topes/cones).
In this dissertation we will drop the adjective convex referred to these polyhedra for com-
pactness. All the polyhedra mentioned in this dissertations are therefore to be considered to
be convex unless explicitly specified.

In the computational geometry terminology, a hyperplane h of Rd is a supporting hyperplane
of the polyhedron H if one of the closed halfspaces of h contains H. A face F of H is a generic
term to indicate either an empty set, H itself or the intersection between H and a supporting
hyperplane. The faces of dimension 0, 1, d − 1 and d − 2 are usually named vertices, edges,
ridges or facets [139].

• A half-space is either of the two parts in which a hyperplane divides an affine space.

• A generator is a broad term to indicate all the elements of Euclidean space Rd that
can be used to represent the considered set. Depending on the considered type of
polyhedron, generators may include vertices, rays (or edges) and intervals.

According to the Minkowski-Weil theorem [125], polyhedra can be equivalently described in
terms of their half-spaces (H-description) or in terms of their generators (G-, V-, R or I-
description). Polytopes, for example, can be equivalently described in terms of H- and/or
V-description. Polyhedral cones C can be equivalently described in terms of H-description
(see Eq. B-5) and/or R-description:

C =
{ p∑
i=1

αiri | ∀αi ≥ 0,
p∑
i=1

αi = 1, ri ∈ R
}

(B-6)

Romeo Orsolino Doctor of Philosophy Thesis



B-2 Minkowsky Sums and Convex Cones 127

where p is the number of rays of the set of rays R:

R =
{
r1, . . . , rp | ri ∈ Rd

}
(B-7)

A cone, however, can not be represented by V-description as it only owns one vertex which
is placed in the origin of the reference frame.

B-2 Minkowsky Sums and Convex Cones

In the following I will discuss the main properties of sum of sets and convex hull algorithm:

• Given two convex sets A and B, their addition (called Minkowski sum), indicated by
the operator ⊕, is defined as the sum of the all elements of A with all the elements of
B:

A⊕ B = {a + b | a ∈ A, b ∈ B} (B-8)

which presents a O(a · b) time (where a is the cardinality of A and b is the cardinality
of B).

• For a given convex set S = {s1, s2, . . . sn|s ∈ Rd} composed of n finite elements of
dimension d, their convex hull is defined as the set of all the convex combinations of all
its elements:

ConvHull(S) =
{

n∑
i=1

αisi | ∀αi ≥ 0,
n∑
i=1

αi = 1
}

(B-9)

Minkowski sum and convex hull operators can be commuted, meaning that the following
property holds:

ConvHull(A⊕ B) = ConvHull(A)⊕ ConvHull(B) (B-10)

The worst-case output complexity of the problem is O(n[d/2]) although there exist sophisti-
cated algorithms that can compute the convex hull in time O(n log(h)) where h is the number
of points of the resulting convex hull.

For the computation of many locomotion related geometrical objects, such as the Contact
Wrench Cone (CWC), it is important to notice that, given the R-representation of two poly-
hedral cones C1 and C2:

C1 =
{ p1∑
i=1

αir1,i | ∀αi ≥ 0,
p1∑
i=1

αi = 1, r1,i ∈ R1

}

C2 =
{ p2∑
i=1

αir2,i | ∀αi ≥ 0,
p2∑
i=1

αi = 1, r2,i ∈ R2

} (B-11)
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= =

(a) The Minkowski sum of the R-description of
two cones corresponds to their convex hull.

=

(b) The Minkowski sum of two generic polytopes using
their V-description.

Figure B-1: Examples of Minkowski sums using (left) R-description and (right) V-description

the R-representation of their Minkowski sum Csum (e.g., Fig. B-1a) can be obtained by
stacking together (using the union operator ∪) the set of rays R1 and R2 of the two individual
cones:

Csum = C1 ⊕ C2 =
{p1+p2∑

i=1
αiri | ∀αi ≥ 0,

p1+p2∑
i=1

αi = 1, ri ∈ R1 ∪R2

}
(B-12)

Despite yielding a redundant representation with internal rays, this property allows a consid-
erable speed-up (O(p1 + p2) time) compared to the Minkowski sum of two convex bounded
polytopes (O(p1 · p2) time).

Besides the difference of computational performances, also the qualitative result provided by
the Minkowski sum can significantly change depending on the type of representation (G-, H-,
V-, R or I-representations) used for the description of the considered geometrical object.
Figure B-1b shows, for example, the result of the Minkowski sum of two generic polytopes
described by their V-representation; it is possible to see that the qualitative result in this
example differs significantly from the case in which the R-representation is used (e.g., Fig.
B-1a).
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